Ilic Aleksandra, Djokovic Nemanja, Djikic Teodora, Nikolic Katarina
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade 11000, Serbia.
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade 11000, Serbia.
Comput Biol Chem. 2024 Dec;113:108242. doi: 10.1016/j.compbiolchem.2024.108242. Epub 2024 Oct 10.
Selective inhibitors of sirtuin-2 (SIRT2) are increasingly recognized as potential therapeutics for cancer and neurodegenerative diseases. Derivatives of 5-((3-amidobenzyl)oxy)nicotinamides have been identified as some of the most potent and selective SIRT2 inhibitors reported to date (Ai et al., 2016; Ai et al., 2023, Baroni et al., 2007). In this study, a 3D-QSAR (3D-Quantitative Structure-Activity Relationship) model was developed using a dataset of 86 nicotinamide-based SIRT2 inhibitors from the literature, along with GRIND-derived pharmacophore models for selected inhibitors. External validation parameters emphasized the reliability of the 3D-QSAR model in predicting SIRT2 inhibition within the defined applicability domain. The interpretation of the 3D-QSAR model facilitated the generation of GRIND-derived pharmacophore models, which in turn enabled the design of novel SIRT2 inhibitors. Furthermore, based on molecular docking results for the SIRT1-3 isoforms, two classification models were developed: a SIRT1/2 model using the Naive Bayes algorithm and a SIRT2/3 model using the k-nearest neighbors algorithm, to predict the selectivity of inhibitors for SIRT1/2 and SIRT2/3. External validation parameters of the selectivity models confirmed their predictive power. Ultimately, the integration of 3D-QSAR, selectivity models and prediction of ADMET properties facilitated the identification of the most promising selective SIRT2 inhibitors for further development.
沉默调节蛋白2(SIRT2)的选择性抑制剂越来越被认为是癌症和神经退行性疾病的潜在治疗药物。5-((3-氨基苄基)氧基)烟酰胺的衍生物已被确定为迄今为止报道的一些最有效和最具选择性的SIRT2抑制剂(Ai等人,2016年;Ai等人,2023年;Baroni等人,2007年)。在本研究中,利用文献中86种基于烟酰胺的SIRT2抑制剂数据集以及选定抑制剂的GRIND衍生药效团模型,开发了一个3D-QSAR(三维定量构效关系)模型。外部验证参数强调了3D-QSAR模型在定义的适用范围内预测SIRT2抑制作用的可靠性。3D-QSAR模型的解释有助于生成GRIND衍生的药效团模型,进而能够设计新型SIRT2抑制剂。此外,基于SIRT1-3亚型的分子对接结果,开发了两个分类模型:一个使用朴素贝叶斯算法的SIRT1/2模型和一个使用k近邻算法的SIRT2/3模型,以预测抑制剂对SIRT1/2和SIRT2/3的选择性。选择性模型的外部验证参数证实了它们的预测能力。最终,3D-QSAR模型与选择性模型的整合以及ADMET性质的预测,有助于识别出最有前景的选择性SIRT2抑制剂,以便进一步开发。