Suppr超能文献

利用可解释的机器学习提高湖泊水质管理水平。

Leveraging explainable machine learning for enhanced management of lake water quality.

作者信息

Soleymani Hasani Sajad, Arias Mauricio E, Nguyen Hung Q, Tarabih Osama M, Welch Zachariah, Zhang Qiong

机构信息

Department of Civil and Environmental Engineering, University of South Florida, 4202 E Fowler Ave, Tampa, FL, 33620, USA.

Department of Civil and Environmental Engineering, University of South Florida, 4202 E Fowler Ave, Tampa, FL, 33620, USA.

出版信息

J Environ Manage. 2024 Nov;370:122890. doi: 10.1016/j.jenvman.2024.122890. Epub 2024 Oct 13.

Abstract

Freshwater lakes worldwide suffer from eutrophication caused by excessive nutrient loads, particularly nitrogen (N) and phosphorus (P) from wastewater and runoff, affecting aquatic life and public health. Using a large (1800 km) subtropical lake as an example (Lake Okeechobee, Florida, USA), this study aims to (1) predict key water quality parameters using machine learning (ML) algorithms based on easily measurable variables, (2) identify spatial patterns of these parameters, and (3) determine environmental drivers influencing turbidity levels. The study employs four ML algorithms-Extreme Gradient Boosting (XGB), Light Gradient-Boosting Machine (LGBM), Support Vector Regression (SVR), and Random Forests (RFs)-to predict total phosphorus (TP), total nitrogen (TN), nitrate + nitrite (NOx-N), and turbidity, via station-specific and lake-wide modeling approaches. The station-specific models uncover spatial patterns, while the lake-wide models support operational decision-making. Results indicated that lake stage (water level), water temperature, and, most notably, turbidity were the main nutrient predictors, with XGB demonstrating superior prediction performance. Spatial analysis using K-means clustering identified three distinct lake regions based on nutrient levels and turbidity. Due to its importance, SHapley Additive exPlanations (SHAP) were employed to identify and quantify environmental factors affecting turbidity. Inflows and lake stage were found as primary drivers of turbidity near lake inlets, while wind speed and air temperature affected turbidity in the middle of the lake. This research advances the understanding of lake water quality dynamics, emphasizing the importance of frequent monitoring of turbidity and its environmental drivers for enhanced management and future mitigation efforts.

摘要

全世界的淡水湖泊都受到富营养化的影响,这是由于过量的营养物质负荷,特别是来自废水和径流的氮(N)和磷(P),影响水生生物和公共健康。本研究以一个大型(1800 公里)亚热带湖泊(美国佛罗里达州奥基乔比湖)为例,旨在:(1)使用机器学习(ML)算法根据易于测量的变量预测关键水质参数;(2)识别这些参数的空间模式;(3)确定影响浊度水平的环境驱动因素。本研究采用四种 ML 算法——极端梯度提升(XGB)、轻梯度提升机(LGBM)、支持向量回归(SVR)和随机森林(RFs)——通过站点特定和全湖建模方法来预测总磷(TP)、总氮(TN)、硝酸盐+亚硝酸盐(NOx-N)和浊度。站点特定模型揭示了空间模式,而全湖模型支持操作决策。结果表明,湖水位(水位)、水温,尤其是浊度是主要的营养预测因子,其中 XGB 表现出优异的预测性能。使用 K-均值聚类的空间分析根据营养水平和浊度确定了三个不同的湖区。由于其重要性,采用 SHapley Additive exPlanations(SHAP)来识别和量化影响浊度的环境因素。发现入流和湖水位是湖区入口附近浊度的主要驱动因素,而风速和气温则影响了湖心的浊度。本研究推进了对湖泊水质动态的理解,强调了频繁监测浊度及其环境驱动因素的重要性,以加强管理和未来的缓解工作。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验