Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
J Mol Graph Model. 2024 Dec;133:108884. doi: 10.1016/j.jmgm.2024.108884. Epub 2024 Oct 13.
This study aims to assess the effectiveness of mCSM-AB2, a graph-based signature machine learning method, for affinity engineering of the humanized single-chain Fv anti-CD147 (HuScFvM6-1B9). In parallel, molecular dynamics (MD) simulations were used to gain valuable insights into the dynamics and affinity of the HuScFvM6-1B9-CD147 complex. The result analysis involved integrating free energy changes calculated from the mCSM-AB2 with binding free energy predictions from MD simulations. The simulated structures of the modified HuScFvM6-1B9-CD147 domain 1 complex from MD simulations were used to highlight critical residues participating in the binding surface. Interestingly, alterations in the pattern of amino acids of HuScFvM6-1B9 at the complementarity determining regions interacting with the 31EDLGS35 epitope were observed, particularly in mutants that lost binding activity. The predicted mutants of HuScFvM6-1B9 were subsequently engineered and expressed in E. coli for subsequent binding property validation. Compared to WT HuScFvM6-1B9, the mutant HuScFvM6-1B9 exhibited a 1.66-fold increase in binding affinity, with a K of 1.75 × 10 M. While mCSM-AB2 demonstrates insignificant improvement in predicting binding affinity enhancements, it excels at predicting negative effects, aligning well with experimental validation. In addition to binding free energies, total entropy was considered to explain the discrepancy between mCSM-AB2 predictions and experimental results. This study provides guidelines and identifies the limitations of mCSM-AB2 and MD simulations in antibody engineering.
本研究旨在评估基于图的签名机器学习方法 mCSM-AB2 在人源化单链 Fv 抗 CD147(HuScFvM6-1B9)亲和力工程中的效果。同时,分子动力学(MD)模拟用于深入了解 HuScFvM6-1B9-CD147 复合物的动力学和亲和力。结果分析涉及整合从 mCSM-AB2 计算得出的自由能变化与 MD 模拟预测的结合自由能。从 MD 模拟获得的修饰后的 HuScFvM6-1B9-CD147 结构域 1 复合物的模拟结构用于突出参与结合表面的关键残基。有趣的是,观察到 HuScFvM6-1B9 中与 31EDLGS35 表位相互作用的互补决定区的氨基酸模式发生了变化,特别是在失去结合活性的突变体中。随后对 HuScFvM6-1B9 的预测突变体进行工程设计并在大肠杆菌中表达,以验证随后的结合特性。与 WT HuScFvM6-1B9 相比,突变体 HuScFvM6-1B9 的结合亲和力增加了 1.66 倍,K 值为 1.75×10-9 M。虽然 mCSM-AB2 在预测结合亲和力增强方面没有显著改善,但它在预测负效应方面表现出色,与实验验证结果一致。除了结合自由能外,总熵也被认为可以解释 mCSM-AB2 预测与实验结果之间的差异。本研究为抗体工程中的 mCSM-AB2 和 MD 模拟提供了指导,并确定了它们的局限性。