Department of Radiation Oncology, institut Godinot, Reims, France; Université de Reims Champagne-Ardenne, Crestic, Reims, France; Yale PET Center, Department of Radiology & Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA.
Institut Curie, université PSL, université Paris Saclay, Inserm Lito U1288, Orsay, France.
Cancer Radiother. 2024 Nov;28(6-7):597-602. doi: 10.1016/j.canrad.2024.09.002. Epub 2024 Oct 15.
This review systematically investigates the role of radiomics in radiotherapy, with a particular emphasis on the use of quantitative imaging biomarkers for predicting clinical outcomes, assessing toxicity, and optimizing treatment planning. While the review encompasses various applications of radiomics in radiotherapy, it particularly highlights its potential for guiding reirradiation of recurrent cancers.
A systematic review was conducted based on a Medline search with the search engine PubMed using the keywords "radiomics or radiomic" and "radiotherapy or reirradiation". Out of 189 abstracts reviewed, 147 original articles were included in the analysis. These studies were categorized by tumor localization, imaging modality, study objectives, and performance metrics, with a particular emphasis on the inclusion of external validation and adherence to a standardized radiomics pipeline.
The review identified 14 tumor localizations, with the majority of studies focusing on lung (33 studies), head and neck (27 studies), and brain (15 studies) cancers. CT was the most frequently employed imaging modality (77 studies) for radiomics, followed by MRI (46 studies) and PET (13 studies). The overall AUC across all studies, primarily focused on predicting the risk of recurrence (94 studies) or toxicity (41 studies), was 0.80 (SD=0.08). However, only 24 studies (16.3%) included external validation, with a slightly lower AUC compared to those without it. For studies using CT versus MRI or PET, both had a median AUC of 0.79, with IQRs of 0.73-0.86 for CT and 0.76-0.855 for MRI/PET, showing no significant differences in performance. Five studies involving reirradiation reported a median AUC of 0.81 (IQR: 0.73-0.825).
Radiomics demonstrates considerable potential in personalizing radiotherapy by improving treatment precision through better outcome prediction and treatment planning. However, its clinical adoption is hindered by the lack of external validation and variability in study designs. Future research should focus on implementing rigorous validation methods and standardizing imaging protocols to enhance the reliability and generalizability of radiomics in clinical radiotherapy, with particular attention to its application in reirradiation.
本综述系统地研究了放射组学在放射治疗中的作用,特别强调了使用定量成像生物标志物来预测临床结果、评估毒性和优化治疗计划。虽然综述涵盖了放射组学在放射治疗中的各种应用,但特别强调了其在指导复发性癌症再照射中的潜力。
基于 Medline 搜索,使用搜索引擎 PubMed 以“radiomics 或 radiomic”和“radiotherapy 或 reirradiation”为关键词进行了系统综述。在审查的 189 篇摘要中,有 147 篇原始文章被纳入分析。这些研究按肿瘤定位、成像方式、研究目标和性能指标进行分类,特别强调了外部验证的纳入和对标准化放射组学流程的遵守。
该综述确定了 14 个肿瘤定位,大多数研究集中在肺癌(33 项研究)、头颈部(27 项研究)和脑癌(15 项研究)。CT 是放射组学最常使用的成像方式(77 项研究),其次是 MRI(46 项研究)和 PET(13 项研究)。所有研究的总体 AUC 主要集中在预测复发风险(94 项研究)或毒性(41 项研究)上,为 0.80(SD=0.08)。然而,只有 24 项研究(16.3%)包括外部验证,其 AUC 略低于没有外部验证的研究。对于使用 CT 与 MRI 或 PET 的研究,两者的 AUC 中位数均为 0.79,CT 的 IQR 为 0.73-0.86,MRI/PET 的 IQR 为 0.76-0.855,性能无显著差异。涉及再照射的 5 项研究报告的 AUC 中位数为 0.81(IQR:0.73-0.825)。
放射组学通过改善预后预测和治疗计划,提高治疗精度,在放射治疗中具有相当大的潜力。然而,由于缺乏外部验证和研究设计的变异性,其临床应用受到阻碍。未来的研究应侧重于实施严格的验证方法和标准化成像协议,以提高放射组学在临床放射治疗中的可靠性和可推广性,特别关注其在再照射中的应用。