Suppr超能文献

一种用于复杂场景下精确检测和计数小麦穗的广义模型。

A generalized model for accurate wheat spike detection and counting in complex scenarios.

机构信息

College of Information and Technology, Jilin Agricultural University, Changchun, China.

College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, Twin Cities, Minnesota, MN, USA.

出版信息

Sci Rep. 2024 Oct 15;14(1):24189. doi: 10.1038/s41598-024-75523-w.

Abstract

Wheat is a crucial crop worldwide, and accurate detection and counting of wheat spikes are vital for yield estimation and breeding. However, these tasks are daunting in complex field environments. To tackle this, we introduce RIA-SpikeNet, a model designed to detect and count wheat spikes in such conditions. First, we introduce an Implicit Decoupling Detection Head to incorporate more implicit knowledge, enabling the model to better distinguish visually similar wheat spikes. Second, Asymmetric Loss is employed as the confidence loss function, enhancing the learning weights of positive and hard samples, thus improving performance in complex scenes. Lastly, the backbone network is modified through reparameterization and the use of larger convolutional kernels, expanding the effective receptive field and improving shape information extraction. These enhancements significantly improve the model's ability to detect and count wheat spikes accurately. RIA-SpikeNet outperforms the state-of-the-art YOLOv8 detection model, achieving a competitive 81.54% mAP and 90.29% R. The model demonstrates superior performance in challenging scenarios, providing an effective tool for wheat spike yield estimation in field environments and valuable support for wheat production and breeding efforts.

摘要

小麦是全球重要的农作物,准确检测和计数麦穗对产量估计和育种至关重要。然而,在复杂的田间环境中,这些任务极具挑战性。针对这一问题,我们引入了 RIA-SpikeNet 模型,旨在解决此类环境下的麦穗检测和计数问题。首先,我们引入了一个隐式解耦检测头,以纳入更多的隐式知识,使模型能够更好地区分视觉上相似的麦穗。其次,我们采用了非对称损失作为置信度损失函数,增强了正样本和难样本的学习权重,从而提高了复杂场景下的性能。最后,通过重新参数化和使用更大的卷积核来改进骨干网络,扩大了有效感受野并提高了形状信息提取能力。这些改进显著提高了模型准确检测和计数麦穗的能力。RIA-SpikeNet 在性能上优于最先进的 YOLOv8 检测模型,实现了 81.54%的 mAP 和 90.29%的 R。该模型在具有挑战性的场景中表现出色,为田间环境下的麦穗产量估计提供了有效的工具,并为小麦生产和育种工作提供了有价值的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0323/11480395/d75044b0b7df/41598_2024_75523_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验