Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Republic of Korea.
Jeju Inside Agency and Cosmetic Science Center, Department of Beauty and Cosmetology, Jeju National University, Jeju 63243, Republic of Korea.
Int J Mol Sci. 2024 Oct 6;25(19):10758. doi: 10.3390/ijms251910758.
The formation of atroposelective biaryl compounds in plants and fungi is well understood; however, polyketide aglycone synthesis and dimerization in bacteria remain unclear. Thus, the biosynthetic gene cluster (BGC) responsible for antibacterial setomimycin production from JCM3382 was examined in comparison with the BGCs of spectomycin, julichromes, lincolnenins, and huanglongmycin. The setomimycin BGC includes post-polyketide synthase (PKS) assembly/cycling enzymes StmD (C-9 ketoreductase), StmE (aromatase), and StmF (thioesterase) as key components. The heterodimeric TcmI-like cyclases StmH and StmK are proposed to aid in forming the setomimycin monomer. In addition, StmI (P-450) is predicted to catalyze the biaryl coupling of two monomeric setomimycin units, with StmM (ferredoxin) specific to the setomimycin BGC. The roles of StmL and StmN, part of the nuclear transport factor 2 (NTF-2)-like protein family and unique to setomimycin BGCs, could particularly interest biochemists and combinatorial biologists. α-Glucosidase, a key enzyme in type 2 diabetes, hydrolyzes carbohydrates into glucose, thereby elevating blood glucose levels. This study aimed to assess the α-glucosidase inhibitory activity of EtOAc extracts of JCM 3382 and setomimycin. The JCM 3382 EtOAc extract and setomimycin exhibited greater potency than the standard inhibitor, acarbose, with IC values of 285.14 ± 2.04 μg/mL and 231.26 ± 0.41 μM, respectively. Molecular docking demonstrated two hydrogen bonds with maltase-glucoamylase chain A residues Thr205 and Lys480 (binding energy = -6.8 kcal·mol), two π-π interactions with Trp406 and Phe450, and one π-cation interaction with Asp542. Residue-energy analysis highlighted Trp406 and Phe450 as key in setomimycin's binding to maltase-glucoamylase. These findings suggest that setomimycin is a promising candidate for further enzymological research and potential antidiabetic therapy.
植物和真菌中阿托型选择性联苯化合物的形成机制已得到充分理解;然而,细菌中聚酮化合物前体合成和二聚化仍不清楚。因此,本研究比较了 JCM3382 产生的抗菌物质色霉素的生物合成基因簇(BGC)与壮观霉素、朱利霉素、林肯霉素和黄霉素 BGC 的异同。色霉素 BGC 包括后聚酮合酶(PKS)组装/循环酶 StmD(C-9 酮还原酶)、StmE(芳构酶)和 StmF(硫酯酶),它们是关键组成部分。推测异二聚体 TcmI 样环化酶 StmH 和 StmK 有助于形成色霉素单体。此外,预测 StmI(P-450)催化两个色霉素单体单元的联苯偶联,而 StmM(铁氧还蛋白)是色霉素 BGC 特有的。StmI 和 StmN 的作用(核转运因子 2(NTF-2)样蛋白家族的一部分,且仅存在于色霉素 BGC 中)可能特别引起生物化学家和组合生物学家的兴趣。α-葡萄糖苷酶是 2 型糖尿病的关键酶,它可将碳水化合物水解成葡萄糖,从而升高血糖水平。本研究旨在评估 JCM3382 和色霉素的 EtOAc 提取物对 α-葡萄糖苷酶的抑制活性。JCM3382 EtOAc 提取物和色霉素的抑制活性均强于标准抑制剂阿卡波糖,IC 值分别为 285.14±2.04μg/mL 和 231.26±0.41μM。分子对接表明,色霉素与麦芽糖葡萄糖苷酶 A 残基 Thr205 和 Lys480 形成 2 个氢键(结合能=-6.8kcal·mol),与 Trp406 和 Phe450 形成 2 个π-π相互作用,与 Asp542 形成 1 个π-阳离子相互作用。残基能量分析突出显示色霉素与麦芽糖葡萄糖苷酶的结合关键残基为 Trp406 和 Phe450。这些发现表明色霉素是进一步酶学研究和潜在抗糖尿病治疗的有前途的候选药物。