Faculty of Sport and Physical Education, University of Belgrade, 11000 Belgrade, Serbia.
School of Health Sciences, Western Sydney University, Sydney, NSW 2751, Australia.
Sensors (Basel). 2024 Sep 25;24(19):6192. doi: 10.3390/s24196192.
Sprint performance is commonly assessed via discrete sprint tests and analyzed through kinematic estimates modeled using a mono-exponential equation, including estimated maximal sprinting speed (MSS), relative acceleration (TAU), maximum acceleration (MAC), and relative propulsive maximal power (PMAX). The acceleration-velocity profile (AVP) provides a simple summary of short sprint performance using two parameters: MSS and MAC, which are useful for simplifying descriptions of sprint performance, comparison between athletes and groups of athletes, and estimating changes in performance over time or due to training intervention. However, discrete testing poses logistical challenges and defines an athlete's AVP exclusively from the performance achieved in an isolated testing environment. Recently, an in situ AVP (velocity-acceleration method) was proposed to estimate kinematic parameters from velocity and acceleration data obtained via global or local positioning systems (GPS/LPS) over multiple training sessions, plausibly improving the time efficiency of sprint monitoring and increasing the sample size that defines the athlete's AVP. However, the validity and sensitivity of estimates derived from the velocity-acceleration method in relation to changes in criterion scores remain elusive. To assess the concurrent validity and sensitivity of kinematic measures from the velocity-acceleration method, 31 elite youth basketball athletes (23 males and 8 females) completed two maximal effort 30 m sprint trials. Performance was simultaneously measured by a laser gun and an LPS (Kinexon), with kinematic parameters estimated using the time-velocity and velocity-acceleration methods. Agreement (%Bias) between laser gun and LPS-derived estimates was within the practically significant magnitude (±5%), while confidence intervals for the percentage mean absolute difference (%MAD) overlapped practical significance for TAU, MAC, and PMAX using the velocity-acceleration method. Only the MSS parameter showed a sensitivity (%MDC95) within practical significance (<5%), with all other parameters showing unsatisfactory sensitivity (>10%) for both the time-velocity and velocity-acceleration methods. Thus, sports practitioners may be confident in the concurrent validity and sensitivity of MSS estimates derived in situ using the velocity-acceleration method, while caution should be applied when using this method to infer an athlete's maximal acceleration capabilities.
冲刺表现通常通过离散冲刺测试进行评估,并通过使用单指数方程建模的运动学估计进行分析,包括估计的最大冲刺速度(MSS)、相对加速度(TAU)、最大加速度(MAC)和相对推进最大功率(PMAX)。加速度-速度曲线(AVP)使用两个参数提供了短冲刺表现的简单总结:MSS 和 MAC,这对于简化冲刺表现的描述、运动员之间和运动员群体之间的比较以及估计随时间或训练干预的表现变化非常有用。然而,离散测试存在后勤挑战,并且仅根据在孤立测试环境中获得的表现来定义运动员的 AVP。最近,提出了一种原位 AVP(速度-加速度方法),以从通过全球或局部定位系统(GPS/LPS)在多个训练课程中获得的速度和加速度数据中估计运动学参数,这可能提高了冲刺监测的时间效率,并增加了定义运动员 AVP 的样本量。然而,从速度-加速度方法得出的估计值与标准分数变化相关的有效性和敏感性仍然难以捉摸。为了评估速度-加速度方法得出的运动学测量的同时有效性和敏感性,31 名精英青年篮球运动员(23 名男性和 8 名女性)完成了两次最大努力的 30 米冲刺试验。性能同时通过激光枪和 LPS(Kinexon)进行测量,使用时间-速度和速度-加速度方法估计运动学参数。激光枪和 LPS 衍生估计值之间的一致性(%偏差)在实际显著范围内(±5%),而使用速度-加速度方法时,TAU、MAC 和 PMAX 的平均绝对差异百分比(%MAD)置信区间与实际意义重叠。只有 MSS 参数显示出实际显著范围内的敏感性(%MDC95)(<5%),而对于时间-速度和速度-加速度方法,所有其他参数的敏感性都不令人满意(>10%)。因此,体育从业者可能对使用速度-加速度方法原位得出的 MSS 估计的同时有效性和敏感性有信心,而在使用该方法推断运动员的最大加速度能力时应谨慎。