Suppr超能文献

一种用于优化多卫星协同任务规划的双层规划方法。

A Bilevel Programming Approach for Optimizing Multi-Satellite Collaborative Mission Planning.

作者信息

Wang Yi, Liu Desheng

机构信息

National Key Laboratory of Space Target Awareness, Space Engineering University, Beijing 101416, China.

出版信息

Sensors (Basel). 2024 Sep 26;24(19):6242. doi: 10.3390/s24196242.

Abstract

With the burgeoning of remote sensing and space technology, multi-satellite collaborative mission planning, which is the key to achieving efficient Earth observation, has become increasingly intricate due to the expanding complexity and volume of observation missions. Addressing the multi-satellite collaborative mission planning problem, which is characterized by its two-stage decision-making process involving mission assignment and resource scheduling, this study investigates a comprehensive joint decision making that encompasses both mission assignment and resource scheduling and comprehensively optimizes the mission completion rate, the mission profit rate, and the satellite resource utilization rate. Considering the interaction of these decisions, we formulate the problem as a bilevel programming model from a game-theoretic perspective and propose a nested bilevel improved genetic algorithm (NBIGA) for its solution. Simulation experiments substantiate the applicability of the bilevel programming model in joint decision making for the stages of mission assignment and resource scheduling in multi-satellite collaborative mission planning, as well as the robustness of the NBIGA. A comparative analysis with the nested bilevel genetic algorithm (NBGA) confirms that the algorithm proposed in this study can achieve superior optimization outcomes and higher solving efficiency.

摘要

随着遥感和空间技术的迅速发展,多卫星协同任务规划作为实现高效地球观测的关键,由于观测任务的复杂性和规模不断扩大,变得越来越复杂。针对以任务分配和资源调度两阶段决策过程为特征的多卫星协同任务规划问题,本研究探讨了一种综合联合决策,该决策涵盖任务分配和资源调度,并全面优化任务完成率、任务利润率和卫星资源利用率。考虑到这些决策之间的相互作用,我们从博弈论的角度将该问题表述为一个双层规划模型,并提出了一种嵌套双层改进遗传算法(NBIGA)来求解。仿真实验证实了双层规划模型在多卫星协同任务规划中任务分配和资源调度阶段联合决策的适用性,以及NBIGA的鲁棒性。与嵌套双层遗传算法(NBGA)的对比分析证实,本研究提出的算法能够实现更优的优化结果和更高的求解效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c950/11478700/948a308271c5/sensors-24-06242-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验