Suppr超能文献

基于优化变分模态分解和SSA-LSTM的采煤工作面瓦斯涌出时间序列预测

Time Series Prediction of Gas Emission in Coal Mining Face Based on Optimized Variational Mode Decomposition and SSA-LSTM.

作者信息

Zhang Jingzhao, Cui Yuxin, Yan Zhenguo, Huang Yuxin, Zhang Chenyu, Zhang Jinlong, Guo Jiantao, Zhao Fei

机构信息

College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.

出版信息

Sensors (Basel). 2024 Oct 6;24(19):6454. doi: 10.3390/s24196454.

Abstract

The accurate prediction of gas emissions has important guiding significance for the prevention and control of gas disasters in order to further improve the prediction accuracy of gas emissions in the mining face. According to the absolute gas emission monitoring data of the 1417 working face in a coal mine in Shaanxi Province, a GA-VMD-SSA-LSTM gas emission prediction model (GVSL) based on genetic algorithm (GA)-optimized variational mode decomposition (VMD) and sparrow search algorithm (SSA)-optimized long short-term memory (LSTM) is proposed. Firstly, a VMD evaluation standard for evaluating the amount of decomposition loss is proposed. Under this standard, the GA is used to find the optimal parameters of the VMD. Then, the SSA is used to optimize the key parameters of the LSTM to establish a GVSL prediction model. The model predicts each component and finally superimposes the prediction results for each component to obtain the final gas emission result. The results show that the accuracy of the evaluation indexes of the GVSL model and VMD-LSTM model, as well as the SSA-LSTM model and Gaussian process regression (GPR) model, are compared and analyzed horizontally and vertically under three scenarios with prediction sets of 121,94 and 57 groups. The GVSL model has the best prediction effect, and its fitting degree R2 values are 0.95, 0.96, and 0.99, which confirms the effectiveness of the proposed GVSL model for the time series prediction of gas emission in the mining face.

摘要

瓦斯涌出量的准确预测对瓦斯灾害防治具有重要指导意义,为进一步提高采煤工作面瓦斯涌出量的预测精度,依据陕西省某煤矿1417工作面的绝对瓦斯涌出量监测数据,提出了一种基于遗传算法(GA)优化变分模态分解(VMD)和麻雀搜索算法(SSA)优化长短期记忆网络(LSTM)的GA-VMD-SSA-LSTM瓦斯涌出量预测模型(GVSL)。首先,提出了一种用于评估分解损失量的VMD评估标准,在此标准下,利用GA寻找VMD的最优参数。然后,使用SSA优化LSTM的关键参数,建立GVSL预测模型。该模型对各分量进行预测,最后将各分量的预测结果叠加得到最终的瓦斯涌出量结果。结果表明,在预测集分别为121、94和57组的三种工况下,对GVSL模型与VMD-LSTM模型、SSA-LSTM模型以及高斯过程回归(GPR)模型的评估指标精度进行了横向和纵向对比分析。GVSL模型预测效果最佳,其拟合度R2值分别为0.95、0.96和0.99,证实了所提GVSL模型对采煤工作面瓦斯涌出量时间序列预测的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d427/11479316/eba831d123a0/sensors-24-06454-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验