Halász László, Sajonz Bastian E A, Miklós Gabriella, van Elswijk Gijs, Hagh Gooie Saman, Várkuti Bálint, Tamás Gertrúd, Coenen Volker A, Erōss Loránd
Institute of Neurosurgery and Neurointervention, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
Albert Szent-Györgyi Medical School, Doctoral School of Clinical Medicine, Clinical and Experimental Research for Reconstructive and Organ-Sparing Surgery, University of Szeged, Szeged, Hungary.
Front Neurol. 2024 Oct 1;15:1467307. doi: 10.3389/fneur.2024.1467307. eCollection 2024.
Although stimulation-induced sensations are typically considered undesirable side effects in clinical DBS therapy, there are emerging scenarios, such as computer-brain interface applications, where these sensations may be intentionally created. The selection of stimulation parameters, whether to avoid or induce sensations, is a challenging task due to the vast parameter space involved. This study aims to streamline DBS parameter selection by employing a machine learning model to predict the occurrence and somatic location of paresthesias in response to thalamic DBS.
We used a dataset comprising 3,359 paresthetic sensations collected from 18 thalamic DBS leads from 10 individuals in two clinical centers. For each stimulation, we modeled the Volume of Tissue Activation (VTA). We then used the stimulation parameters and the VTA information to train a machine learning model to predict the occurrence of sensations and their corresponding somatic areas.
Our results show fair to substantial agreement with ground truth in predicting the presence and somatic location of DBS-evoked paresthesias, with Kappa values ranging from 0.31 to 0.72. We observed comparable performance in predicting the presence of paresthesias for both seen and unseen cases (Kappa 0.72 vs. 0.60). However, Kappa agreement for predicting specific somatic locations was significantly lower for unseen cases (0.53 vs. 0.31).
The results suggest that machine learning can potentially be used to optimize DBS parameter selection, leading to faster and more efficient postoperative management. Outcome predictions may be used to guide clinical DBS programming or tuning of DBS based computer-brain interfaces.
尽管在临床脑深部电刺激(DBS)治疗中,刺激诱发的感觉通常被视为不良副作用,但在诸如计算机-脑接口应用等新兴场景中,这些感觉可能是被有意制造出来的。由于涉及的参数空间巨大,选择刺激参数(无论是为了避免还是诱发感觉)是一项具有挑战性的任务。本研究旨在通过使用机器学习模型来预测丘脑DBS诱发的感觉异常的发生及躯体位置,从而简化DBS参数选择。
我们使用了一个数据集,该数据集包含从两个临床中心的10名个体的18个丘脑DBS电极上收集到的3359次感觉异常。对于每次刺激,我们对组织激活体积(VTA)进行建模。然后,我们使用刺激参数和VTA信息来训练一个机器学习模型,以预测感觉的发生及其相应的躯体区域。
我们的结果表明,在预测DBS诱发的感觉异常的存在及躯体位置方面,与真实情况有中等至高度的一致性,Kappa值范围为0.31至0.72。我们观察到,在预测已见和未见病例的感觉异常存在方面,表现相当(Kappa值分别为0.72和0.60)。然而,对于未见病例,预测特定躯体位置的Kappa一致性显著较低(分别为0.53和0.31)。
结果表明,机器学习有可能用于优化DBS参数选择,从而实现更快、更高效的术后管理。结果预测可用于指导临床DBS编程或基于DBS的计算机-脑接口的调整。