Suppr超能文献

自主跟踪蜜蜂行为的长期合作机器人。

Autonomous tracking of honey bee behaviors over long-term periods with cooperating robots.

机构信息

Artificial Intelligence Centre, Faculty of Electrical Engineering, Czech Technical University, Prague, Czechia.

Artificial Life Lab, Department of Zoology, Institute of Biology, University of Graz, Graz, Austria.

出版信息

Sci Robot. 2024 Oct 16;9(95):eadn6848. doi: 10.1126/scirobotics.adn6848.

Abstract

Digital and mechatronic methods, paired with artificial intelligence and machine learning, are transformative technologies in behavioral science and biology. The central element of the most important pollinator species-honey bees-is the colony's queen. Because honey bee self-regulation is complex and studying queens in their natural colony context is difficult, the behavioral strategies of these organisms have not been widely studied. We created an autonomous robotic observation and behavioral analysis system aimed at continuous observation of the queen and her interactions with worker bees and comb cells, generating behavioral datasets of exceptional length and quality. Key behavioral metrics of the queen and her social embedding within the colony were gathered using our robotic system. Data were collected continuously for 24 hours a day over a period of 30 days, demonstrating our system's capability to extract key behavioral metrics at microscopic, mesoscopic, and macroscopic system levels. Additionally, interactions among the queen, worker bees, and brood were observed and quantified. Long-term continuous observations performed by the robot yielded large amounts of high-definition video data that are beyond the observation capabilities of humans or stationary cameras. Our robotic system can enable a deeper understanding of the innermost mechanisms of honey bees' swarm-intelligent self-regulation. Moreover, it offers the possibility to study other social insect colonies, biocoenoses, and ecosystems in an automated manner. Social insects are keystone species in all terrestrial ecosystems; thus, developing a better understanding of their behaviors will be invaluable for the protection and even the restoration of our fragile ecosystems globally.

摘要

数字和机电一体化方法,加上人工智能和机器学习,是行为科学和生物学中的变革性技术。最重要的传粉物种——蜜蜂的核心要素是蜂群的蜂王。由于蜜蜂的自我调节非常复杂,并且在其自然蜂群环境中研究蜂王也很困难,因此这些生物的行为策略尚未得到广泛研究。我们创建了一个自主的机器人观察和行为分析系统,旨在对蜂王及其与工蜂和巢房细胞的相互作用进行连续观察,生成具有出色长度和质量的行为数据集。使用我们的机器人系统收集了蜂王及其在群体中的社会嵌入的关键行为指标。数据在 30 天的时间内每天连续收集 24 小时,证明了我们的系统能够从微观、介观和宏观系统层面提取关键行为指标。此外,还观察和量化了蜂王、工蜂和幼虫之间的相互作用。机器人的长期连续观察产生了大量超出人类或固定摄像机观察能力的高清视频数据。我们的机器人系统可以帮助更深入地了解蜜蜂群体智能自我调节的内部机制。此外,它还提供了以自动化方式研究其他社会性昆虫群体、生物群落和生态系统的可能性。社会性昆虫是所有陆地生态系统中的关键物种;因此,更好地了解它们的行为对于保护甚至恢复我们全球脆弱的生态系统将是非常宝贵的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验