University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
The Jackson Laboratory, Bar Harbor, ME, USA.
J Biomed Semantics. 2024 Oct 17;15(1):19. doi: 10.1186/s13326-024-00320-3.
Ontologies are fundamental components of informatics infrastructure in domains such as biomedical, environmental, and food sciences, representing consensus knowledge in an accurate and computable form. However, their construction and maintenance demand substantial resources and necessitate substantial collaboration between domain experts, curators, and ontology experts. We present Dynamic Retrieval Augmented Generation of Ontologies using AI (DRAGON-AI), an ontology generation method employing Large Language Models (LLMs) and Retrieval Augmented Generation (RAG). DRAGON-AI can generate textual and logical ontology components, drawing from existing knowledge in multiple ontologies and unstructured text sources.
We assessed performance of DRAGON-AI on de novo term construction across ten diverse ontologies, making use of extensive manual evaluation of results. Our method has high precision for relationship generation, but has slightly lower precision than from logic-based reasoning. Our method is also able to generate definitions deemed acceptable by expert evaluators, but these scored worse than human-authored definitions. Notably, evaluators with the highest level of confidence in a domain were better able to discern flaws in AI-generated definitions. We also demonstrated the ability of DRAGON-AI to incorporate natural language instructions in the form of GitHub issues.
These findings suggest DRAGON-AI's potential to substantially aid the manual ontology construction process. However, our results also underscore the importance of having expert curators and ontology editors drive the ontology generation process.
本体论是生物医学、环境和食品科学等领域信息学基础设施的基本组成部分,以准确和可计算的形式表示共识知识。然而,它们的构建和维护需要大量的资源,并需要领域专家、策展人和本体论专家之间的大量合作。我们提出了使用人工智能(DRAGON-AI)的动态检索增强本体生成方法,这是一种使用大语言模型(LLMs)和检索增强生成(RAG)的本体生成方法。DRAGON-AI 可以从多个本体和非结构化文本源中提取现有知识,生成文本和逻辑本体组件。
我们评估了 DRAGON-AI 在十个不同本体论中从头开始构建术语的性能,充分利用了对结果的广泛手动评估。我们的方法在生成关系方面具有很高的精度,但比基于逻辑的推理的精度略低。我们的方法还能够生成被专家评估者认为可接受的定义,但这些定义的得分低于人工编写的定义。值得注意的是,对某个领域有最高信心的评估者能够更好地辨别 AI 生成定义中的缺陷。我们还展示了 DRAGON-AI 以 GitHub 问题的形式纳入自然语言指令的能力。
这些发现表明,DRAGON-AI 有可能大大辅助手动本体构建过程。然而,我们的结果也强调了让专家策展人和本体编辑者驱动本体生成过程的重要性。