Moreno-Sanchez Ismael, Hernandez-Huertas Luis, Nahon-Cano Daniel, Gomez-Marin Carlos, Martinez-García Pedro Manuel, Treichel Anthony J, Tomas-Gallardo Laura, da Silva Pescador Gabriel, Kushawah Gopal, Díaz-Moscoso Alejandro, Cano-Ruiz Alejandra, Walker John A, Muñoz Manuel J, Holden Kevin, Galcerán Joan, Nieto María Ángela, Bazzini Ariel, Moreno-Mateos Miguel A
Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain.
Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain.
bioRxiv. 2024 Oct 9:2024.10.08.617220. doi: 10.1101/2024.10.08.617220.
CRISPR-Cas13 systems are widely used in basic and applied sciences. However, its application has recently generated controversy due to collateral activity in mammalian cells and mouse models. Moreover, its efficiency could be improved . Here, we optimized transient formulations as ribonucleoprotein complexes or mRNA-gRNA combinations to enhance the CRISPR-RfxCas13d system in zebrafish. We i) used chemically modified gRNAs to allow more penetrant loss-of-function phenotypes, ii) improved nuclear RNA-targeting, and iii) compared different computational models and determined the most accurate to predict gRNA activity . Furthermore, we demonstrated that transient CRISPR-RfxCas13d can effectively deplete endogenous mRNAs in zebrafish embryos without inducing collateral effects, except when targeting extremely abundant and ectopic RNAs. Finally, we implemented alternative RNA-targeting CRISPR-Cas systems with reduced or absent collateral activity. Altogether, these findings contribute to CRISPR-Cas technology optimization for RNA targeting in zebrafish through transient approaches and assist in the progression of applications.
CRISPR-Cas13系统广泛应用于基础科学和应用科学领域。然而,由于其在哺乳动物细胞和小鼠模型中的附带活性,该系统的应用近来引发了争议。此外,其效率还有提升空间。在此,我们优化了作为核糖核蛋白复合物或mRNA-gRNA组合的瞬时制剂,以增强斑马鱼中的CRISPR-RfxCas13d系统。我们:i)使用化学修饰的gRNA以实现更具穿透性的功能丧失表型;ii)改善核RNA靶向;iii)比较不同的计算模型并确定预测gRNA活性最准确的模型。此外,我们证明,瞬时CRISPR-RfxCas13d能够有效耗尽斑马鱼胚胎中的内源性mRNA,且不会引发附带效应,但靶向极其丰富和异位的RNA时除外。最后,我们实施了具有降低或无附带活性的替代性RNA靶向CRISPR-Cas系统。总之,这些发现有助于通过瞬时方法对斑马鱼RNA靶向的CRISPR-Cas技术进行优化,并推动相关应用的发展。