Suppr超能文献

多发性硬化亚组:基于患者报告结局和大样本临床数据的驱动聚类。

Multiple sclerosis subgroups: Data-driven clusters based on patient-reported outcomes and a large clinical sample.

机构信息

McLean Hospital, Harvard Medical School, Belmont, MA, USA.

The Mellen Center for Multiple Sclerosis and Research, Department of Neurology, Neurological Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.

出版信息

Mult Scler. 2024 Nov;30(13):1642-1652. doi: 10.1177/13524585241282763. Epub 2024 Oct 17.

Abstract

BACKGROUND

While standard clinical assessments provide great value for people with multiple sclerosis (PwMS), they are limited in their ability to characterize patient perspectives and individual-level symptom heterogeneity.

OBJECTIVES

To identify PwMS subgroups based on patient-reported outcomes (PROs) of physical, cognitive, and emotional symptoms. We also sought to connect PRO-based subgroups with demographic variables, functional impairment, hypertension and smoking status, traditional qualitative multiple sclerosis (MS) symptom groupings, and neuroperformance measurements.

METHODS

Using a cross-sectional design, we applied latent profile analysis (LPA) to a large database of PROs; analytic sample = 6619).

RESULTS

We identified nine distinct MS subtypes based on PRO patterns. The subtypes were primarily categorized into low, moderate, and high mobility impairment clusters. Approximately 70% of participants were classified in a low mobility impairment group, 10% in a moderate mobility impairment group, and 20% in a high mobility impairment group. Within these subgroups, several unexpected patterns were observed, such as high mobility impairment clusters reporting low non-mobility impairment.

CONCLUSIONS

The present study highlights an opportunity to advance precision medicine approaches in MS. Combining PROs with data-driven methodology allows for a cost-effective and personalized characterization of symptom presentations. that can inform clinical practice and future research designs.

摘要

背景

尽管标准的临床评估对多发性硬化症(MS)患者具有重要价值,但它们在描述患者的观点和个体层面症状异质性方面存在局限性。

目的

根据患者报告的身体、认知和情绪症状的结果(PROs),确定多发性硬化症患者的亚组。我们还试图将基于 PRO 的亚组与人口统计学变量、功能障碍、高血压和吸烟状况、传统的定性多发性硬化症(MS)症状分组以及神经表现测量联系起来。

方法

使用横断面设计,我们对大量的 PRO 数据应用潜在剖面分析(LPA);分析样本=6619)。

结果

我们根据 PRO 模式确定了九个不同的 MS 亚型。这些亚型主要分为低、中、高移动障碍集群。约 70%的参与者被归类为低移动障碍组,10%的参与者被归类为中移动障碍组,20%的参与者被归类为高移动障碍组。在这些亚组中,观察到了一些出乎意料的模式,例如高移动障碍集群报告的非移动障碍较低。

结论

本研究强调了在多发性硬化症中推进精准医学方法的机会。将 PROs 与数据驱动的方法相结合,可以对症状表现进行具有成本效益的个性化描述,从而为临床实践和未来的研究设计提供信息。

相似文献

8
Mobility, walking and physical activity in persons with multiple sclerosis.多发性硬化症患者的活动能力、行走及身体活动
Curr Med Res Opin. 2014 Sep;30(9):1857-62. doi: 10.1185/03007995.2014.921147. Epub 2014 May 29.

本文引用的文献

8
Review: Patient-reported outcomes in multiple sclerosis care.综述:多发性硬化症护理中的患者报告结局。
Mult Scler Relat Disord. 2019 Aug;33:61-66. doi: 10.1016/j.msard.2019.05.019. Epub 2019 May 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验