Suppr超能文献

用于半自动检测人胰腺β细胞中胰岛素颗粒胞吐作用的算法

Algorithm for semi-automatic detection of insulin granule exocytosis in human pancreatic β-cells.

作者信息

Makam Aishwarya A, Dubey Abhimanyu, Maharana Shovamayee, Gandasi Nikhil R

机构信息

Department of Developmental Biology and Genetics (DBG), Indian Institute of Science (IISc), Bengaluru, 560012, India.

Department of Chemical Engineering, Indian Institute of Science (IISc), Bengaluru, 560012, India.

出版信息

Heliyon. 2024 Sep 27;10(19):e38307. doi: 10.1016/j.heliyon.2024.e38307. eCollection 2024 Oct 15.

Abstract

Image processing and analysis are two significant areas that are highly important for interpreting enormous amounts of data obtained from microscopy-based experiments. Several image analysis tools exist for the general detection of fundamental cellular processes, but tools to detect highly distinct cellular functions are few. One such process is exocytosis, which involves the release of vesicular content out of the cell. The size of the vesicles and the inherent differences in the imaging parameters demand specific analysis platforms for detecting exocytosis. In this direction, we have developed an image-processing algorithm based on Lagrangian particle tracking. The tool was developed to ensure that there is efficient detection of punctate structures initially developed by mathematical equations, fluorescent beads and cellular images with fluorescently labelled vesicles that can exocytose. The detection of these punctate structures using the tool was compared with other existing tools, such as find maxima in ImageJ and manual detection. The tool not only met the precision of existing solutions but also expedited the process, resulting in a more time-efficient solution. During exocytosis, there is a sudden dip in the intensity of the fluorescently labelled vesicles that look like punctate structures. The algorithm precisely locates the vesicles' coordinates and quantifies the variations in their respective intensities. Subsequently, the algorithm processes and retrieves pertinent information from large datasets surpassing that of conventional methods under our evaluation, affirming its efficacy. Furthermore, the tool exhibits adaptability for the image analysis of diverse cellular processes, requiring only minimal modifications to ensure accurate detection of exocytosis.

摘要

图像处理和分析是两个重要领域,对于解释从基于显微镜的实验中获得的大量数据至关重要。存在几种用于一般检测基本细胞过程的图像分析工具,但用于检测高度独特细胞功能的工具却很少。胞吐作用就是这样一种过程,它涉及囊泡内容物释放到细胞外。囊泡的大小以及成像参数的固有差异需要特定的分析平台来检测胞吐作用。在这个方向上,我们基于拉格朗日粒子跟踪开发了一种图像处理算法。开发该工具是为了确保能够高效检测最初由数学方程、荧光珠以及带有可胞吐荧光标记囊泡的细胞图像所形成的点状结构。使用该工具对这些点状结构的检测与其他现有工具进行了比较,例如ImageJ中的查找最大值工具和手动检测。该工具不仅达到了现有解决方案的精度,还加快了处理过程,从而得到了更高效的解决方案。在胞吐过程中,看起来像点状结构的荧光标记囊泡的强度会突然下降。该算法精确地定位囊泡的坐标并量化它们各自强度的变化。随后,该算法从大型数据集中处理并检索相关信息,在我们的评估中超过了传统方法,证实了其有效性。此外,该工具对各种细胞过程的图像分析具有适应性,只需要进行最小程度的修改就能确保准确检测胞吐作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6212/11483283/28c779791a7e/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验