Najjar A, Lange D, Géniès C, Kuehnl J, Zifle A, Jacques C, Fabian E, Hewitt N, Schepky A
Beiersdorf AG, Hamburg, Germany.
Pierre Fabre Dermo-Cosmétique and Personal Care, Toulouse, France.
Front Pharmacol. 2024 Oct 3;15:1421650. doi: 10.3389/fphar.2024.1421650. eCollection 2024.
All cosmetic ingredients must be evaluated for their safety to consumers. In the absence of data, systemic concentrations of ingredients can be predicted using Physiologically based Pharmacokinetic (PBPK) models. However, more examples are needed to demonstrate how they can be validated and applied in Next-Generation Risk Assessments (NGRA) of cosmetic ingredients. We used a bottom-up approach to develop human PBPK models for genistein and daidzein for a read-across NGRA, whereby genistein was the source chemical for the target chemical, daidzein.
An oral rat PBPK model for genistein was built using PK-Sim and ADME input data. This formed the basis of the daidzein oral rat PBPK model, for which chemical-specific input parameters were used. Rat PBPK models were then converted to human models using human-specific physiological parameters and human ADME data. skin metabolism and penetration data were used to build the dermal module to represent the major route of exposure to cosmetics.
The initial oral rat model for genistein was qualified since it predicted values within 2-fold of measured PK values. This was used to predict plasma concentrations from the NOAEL for genistein to set test concentrations in bioassays. Intrinsic hepatic clearance and unbound fractions in plasma were identified as sensitive parameters impacting the predicted C values. Sensitivity and uncertainty analyses indicated the developed PBPK models had a moderate level of confidence. An important aspect of the development of the dermal module was the implementation of first-pass metabolism, which was extensive for both chemicals. The final human PBPK model for daidzein was used to convert the PoD of 33 nM (from an estrogen receptor transactivation assay) to an external dose of 0.2% in a body lotion formulation.
PBPK models for genistein and daidzein were developed as a central component of an NGRA read-across case study. This will help to gain regulatory confidence in the use of PBPK models, especially for cosmetic ingredients.
所有化妆品成分都必须针对其对消费者的安全性进行评估。在缺乏数据的情况下,可以使用基于生理的药代动力学(PBPK)模型预测成分的全身浓度。然而,需要更多实例来证明如何在化妆品成分的下一代风险评估(NGRA)中对其进行验证和应用。我们采用自下而上的方法,为染料木黄酮和大豆苷元开发了人类PBPK模型,用于类推NGRA,其中染料木黄酮是目标化学物质大豆苷元的源化学物质。
使用PK-Sim和ADME输入数据构建了染料木黄酮的口服大鼠PBPK模型。这构成了大豆苷元口服大鼠PBPK模型的基础,该模型使用了化学物质特异性输入参数。然后使用人类特异性生理参数和人类ADME数据将大鼠PBPK模型转换为人类模型。皮肤代谢和渗透数据用于构建皮肤模块,以代表接触化妆品的主要途径。
染料木黄酮最初的口服大鼠模型合格,因为它预测的值在测量的PK值的2倍以内。这被用于从染料木黄酮的无观察到有害作用水平(NOAEL)预测血浆浓度,以设定生物测定中的测试浓度。肝脏内在清除率和血浆中未结合分数被确定为影响预测C值的敏感参数。敏感性和不确定性分析表明,所开发的PBPK模型具有中等置信水平。皮肤模块开发的一个重要方面是首过代谢的实施,这两种化学物质的首过代谢都很广泛。最终的大豆苷元人类PBPK模型用于将33 nM的毒理学关注阈值(PoD,来自雌激素受体反式激活试验)转换为身体乳液配方中0.2%的外部剂量。
开发了染料木黄酮和大豆苷元的PBPK模型,作为NGRA类推案例研究的核心组成部分。这将有助于在使用PBPK模型方面获得监管机构的信心,特别是对于化妆品成分。