Kuehl Baker, Raman Sharan, Becker Andrew, Garg Vivek, Roberts-Dobie Jefferson, McCaslin Anna, Brensdal Joran, Attinger Jacques, Burton Lauren, Forrester Michael, Hohmann Austin, Cochran Eric W
Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States.
ACS Appl Mater Interfaces. 2024 Oct 30;16(43):59280-59290. doi: 10.1021/acsami.4c12730. Epub 2024 Oct 18.
This work introduces a novel 1-pot, 0-waste, 0-VOC methodology for synthesizing polymeric surfactants using acrylated epoxidized soybean oil and acrylated glycerol as primary monomers. These macromolecular surfactants are synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, allowing for tunable hydrophilic-lipophilic balance (HLB) and ionic properties. We characterize the copolymers' chemical composition and surface-active properties, and evaluate their effectiveness in forming and stabilizing emulsions of semiepoxidized soybean oil and poly(acrylated epoxidized high oleic soybean oil). Comprehensive analyses, including gel permeation chromatography, nuclear magnetic resonance spectroscopy, dynamic light scattering, particle size distribution, zeta potential, and critical micelle concentration, provide detailed insights into the copolymers and the emulsions they form. The results demonstrate that the RAFT-polymerized surfactants offer long-lasting stability and effectively disperse both common oil-in-water emulsions and highly viscous and hydrophobic polymer latexes. These surfactants outperform traditional small molecule surfactants by reducing particle size and preventing phase separation, even over extended storage periods. Stable polymer-water interfaces are achieved through HLB control, tailored by monomer composition, and the final product requires no additional purification since polymerization occurs in liquid surfactants. While small molecules contribute to rapid micelle formation, the polymeric components enhance long-term stability through steric repulsion and slower dynamics. This method enables even the emulsification of polymers with submicron particle size, which ordinarily requires emulsion polymerization. Integrating biobased polymeric surfactants with advanced polymer processing techniques opens new possibilities for transforming highly hydrophobic polymers into latexes, facilitating downstream applications. This innovation enhances the environmental sustainability of surfactant production and broadens the potential for polymer emulsification technologies. Additionally, the integrated solution-processing approach demonstrated here can be applied to other emerging polymers, where judiciously selected nonvolatile solvents facilitate the polymerization and play a role in the final application.
这项工作介绍了一种新颖的一锅法、零废物、零挥发性有机化合物(VOC)的方法,用于使用丙烯酸化环氧大豆油和丙烯酸化甘油作为主要单体合成聚合物表面活性剂。这些大分子表面活性剂通过可逆加成-断裂链转移(RAFT)聚合反应合成,从而实现可调节的亲水亲油平衡(HLB)和离子性质。我们对共聚物的化学组成和表面活性性质进行了表征,并评估了它们形成和稳定半环氧大豆油和聚(丙烯酸化环氧高油酸大豆油)乳液的有效性。包括凝胶渗透色谱、核磁共振光谱、动态光散射、粒度分布、zeta电位和临界胶束浓度在内的综合分析,为共聚物及其形成的乳液提供了详细的见解。结果表明,RAFT聚合的表面活性剂具有持久的稳定性,能够有效分散常见的水包油乳液以及高粘性和疏水性聚合物胶乳。这些表面活性剂通过减小粒径和防止相分离,甚至在延长的储存期内,都优于传统的小分子表面活性剂。通过控制单体组成来调节HLB,可实现稳定的聚合物-水界面,并且由于聚合反应在液体表面活性剂中进行,最终产物无需额外纯化。虽然小分子有助于快速形成胶束,但聚合物成分通过空间位阻排斥和较慢的动力学增强了长期稳定性。这种方法甚至能够乳化通常需要乳液聚合的亚微米级粒径的聚合物。将生物基聚合物表面活性剂与先进的聚合物加工技术相结合,为将高度疏水的聚合物转化为胶乳开辟了新的可能性,有利于下游应用。这一创新提高了表面活性剂生产的环境可持续性,并拓宽了聚合物乳化技术的潜力。此外,这里展示的集成溶液加工方法可应用于其他新兴聚合物,其中明智选择的非挥发性溶剂有助于聚合反应,并在最终应用中发挥作用。