Suppr超能文献

ACU-TransNet:用于息肉分割的注意力与卷积增强型UNet-Transformer网络

ACU-TransNet: Attention and convolution-augmented UNet-transformer network for polyp segmentation.

作者信息

Huang Lei, Wu Yun

机构信息

State Key Laboratory of Public Big Data, Guizhou University, Guiyang, China.

College of Computer Science and Technology, Guizhou University, Guiyang, China.

出版信息

J Xray Sci Technol. 2024;32(6):1449-1464. doi: 10.3233/XST-240076.

Abstract

BACKGROUND

UNet has achieved great success in medical image segmentation. However, due to the inherent locality of convolution operations, UNet is deficient in capturing global features and long-range dependencies of polyps, resulting in less accurate polyp recognition for complex morphologies and backgrounds. Transformers, with their sequential operations, are better at perceiving global features but lack low-level details, leading to limited localization ability. If the advantages of both architectures can be effectively combined, the accuracy of polyp segmentation can be further improved.

METHODS

In this paper, we propose an attention and convolution-augmented UNet-Transformer Network (ACU-TransNet) for polyp segmentation. This network is composed of the comprehensive attention UNet and the Transformer head, sequentially connected by the bridge layer. On the one hand, the comprehensive attention UNet enhances specific feature extraction through deformable convolution and channel attention in the first layer of the encoder and achieves more accurate shape extraction through spatial attention and channel attention in the decoder. On the other hand, the Transformer head supplements fine-grained information through convolutional attention and acquires hierarchical global characteristics from the feature maps.

RESULTS

mcU-TransNet could comprehensively learn dataset features and enhance colonoscopy interpretability for polyp detection.

CONCLUSION

Experimental results on the CVC-ClinicDB and Kvasir-SEG datasets demonstrate that mcU-TransNet outperforms existing state-of-the-art methods, showcasing its robustness.

摘要

背景

U-Net在医学图像分割方面取得了巨大成功。然而,由于卷积操作固有的局部性,U-Net在捕捉息肉的全局特征和长程依赖性方面存在不足,导致对复杂形态和背景的息肉识别不够准确。Transformer通过其序列操作,更擅长感知全局特征,但缺乏低级细节,导致定位能力有限。如果能有效结合这两种架构的优势,息肉分割的准确性可以进一步提高。

方法

在本文中,我们提出了一种用于息肉分割的注意力和卷积增强U-Net-Transformer网络(ACU-TransNet)。该网络由综合注意力U-Net和Transformer头部组成,通过桥接层顺序连接。一方面,综合注意力U-Net在编码器的第一层通过可变形卷积和通道注意力增强特定特征提取,并在解码器中通过空间注意力和通道注意力实现更准确的形状提取。另一方面,Transformer头部通过卷积注意力补充细粒度信息,并从特征图中获取分层全局特征。

结果

mcU-TransNet可以全面学习数据集特征,并增强结肠镜检查对息肉检测的可解释性。

结论

在CVC-ClinicDB和Kvasir-SEG数据集上的实验结果表明,mcU-TransNet优于现有的最先进方法,展示了其鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验