文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习的 CD4 常规 T 细胞基因模型预测结直肠癌的生存和免疫反应。

Machine learning-based model for CD4 conventional T cell genes to predict survival and immune responses in colorectal cancer.

机构信息

First Clinical Medical College, General Hospital of Ningxia Medical University, 804 Shengli Road, Yinchuan, 750004, China.

Department of Anal-Colorectal Surgery, General Hospital of Ningxia Medical University, 804 Shengli Road, Yinchuan, 750004, China.

出版信息

Sci Rep. 2024 Oct 18;14(1):24426. doi: 10.1038/s41598-024-75270-y.


DOI:10.1038/s41598-024-75270-y
PMID:39424871
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11489786/
Abstract

Globally, CRC ranks as a principal cause of mortality, with projections indicating a substantial rise in both incidence and mortality by the year 2040. The immunological responses to cancer heavily rely on the function of CD4Tconv. Despite this critical role, prognostic studies on CRC-related CD4Tconv remain insufficient. In this investigation, transcriptomic and clinical data were sourced from TCGA and GEO. Initially, we pinpointed CD4TGs using single-cell datasets. Prognostic genes were then isolated through univariate Cox regression analysis. Building upon this, 101 machine learning algorithms were employed to devise a novel risk assessment framework, which underwent rigorous validation using Kaplan-Meier survival analysis, univariate and multivariate Cox regression, time-dependent ROC curves, nomograms, and calibration plots. Furthermore, GSEA facilitated the examination of these genes' potential roles. The RS derived from this model was also analyzed for its implications in the TME, and its potential utility in immunotherapy and chemotherapy contexts. A novel prognostic model was developed, utilizing eight CD4TGs that are significantly linked to the outcomes of patients with CRC. This model's RS showcased remarkable predictive reliability for the overall survival rates of CRC patients and strongly correlated with malignancy levels. RS serves as an autonomous prognostic indicator, capable of accurately forecasting patient prognoses. Based on the median value of RS, patients were categorized into subgroups of high and low risk. The subgroup with higher risk demonstrated increased immune infiltration and heightened activity of genes associated with immunity. This investigation's establishment of a CD4TGs risk model introduces novel biomarkers for the clinical evaluation of CRC risks. These biomarkers may enhance therapeutic approaches and, in turn, elevate the clinical outcomes for patients with CRC by facilitating an integrated treatment strategy.

摘要

全球范围内,CRC 是主要的死亡原因之一,预计到 2040 年,CRC 的发病率和死亡率将大幅上升。癌症的免疫反应在很大程度上依赖于 CD4Tconv 的功能。尽管 CD4Tconv 具有如此关键的作用,但 CRC 相关 CD4Tconv 的预后研究仍然不足。在这项研究中,我们从 TCGA 和 GEO 数据库中获取了转录组和临床数据。首先,我们使用单细胞数据集确定了 CD4TGs。然后通过单变量 Cox 回归分析分离出预后基因。在此基础上,我们使用 101 种机器学习算法构建了一个新的风险评估框架,并通过 Kaplan-Meier 生存分析、单变量和多变量 Cox 回归、时间依赖性 ROC 曲线、列线图和校准图对其进行了严格的验证。此外,GSEA 有助于研究这些基因的潜在作用。该模型得到的 RS 也被分析了其在 TME 中的作用,以及在免疫治疗和化疗中的潜在应用。我们开发了一种新的预后模型,该模型利用 8 个与 CRC 患者结局显著相关的 CD4TGs。该模型的 RS 对 CRC 患者的总生存率具有显著的预测可靠性,并与恶性程度高度相关。RS 是一个自主的预后指标,能够准确预测患者的预后。根据 RS 的中位数,患者被分为高风险和低风险亚组。高风险亚组的免疫浸润增加,与免疫相关的基因活性增强。本研究建立的 CD4TGs 风险模型为 CRC 风险的临床评估提供了新的生物标志物。这些生物标志物可以增强治疗方法,并通过促进综合治疗策略,提高 CRC 患者的临床结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/750a/11489786/38144dfb13a5/41598_2024_75270_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/750a/11489786/e555a147dfbf/41598_2024_75270_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/750a/11489786/bd82a42a6987/41598_2024_75270_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/750a/11489786/3b2d9f82eddf/41598_2024_75270_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/750a/11489786/1bd1c62524bd/41598_2024_75270_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/750a/11489786/14e3f228b887/41598_2024_75270_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/750a/11489786/649c0271df3a/41598_2024_75270_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/750a/11489786/13db4a5d2f3a/41598_2024_75270_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/750a/11489786/38144dfb13a5/41598_2024_75270_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/750a/11489786/e555a147dfbf/41598_2024_75270_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/750a/11489786/bd82a42a6987/41598_2024_75270_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/750a/11489786/3b2d9f82eddf/41598_2024_75270_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/750a/11489786/1bd1c62524bd/41598_2024_75270_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/750a/11489786/14e3f228b887/41598_2024_75270_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/750a/11489786/649c0271df3a/41598_2024_75270_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/750a/11489786/13db4a5d2f3a/41598_2024_75270_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/750a/11489786/38144dfb13a5/41598_2024_75270_Fig8_HTML.jpg

相似文献

[1]
Machine learning-based model for CD4 conventional T cell genes to predict survival and immune responses in colorectal cancer.

Sci Rep. 2024-10-18

[2]
CD4+ conventional T cells-related genes signature is a prognostic indicator for ovarian cancer.

Front Immunol. 2023

[3]
A CLRN3-Based CD8 T-Related Gene Signature Predicts Prognosis and Immunotherapy Response in Colorectal Cancer.

Biomolecules. 2024-7-24

[4]
A Pyroptosis-Related Gene Signature Predicts Prognosis and Tumor Immune Microenvironment in Colorectal Cancer.

Technol Cancer Res Treat. 2024

[5]
The necroptosis-related signature and tumor microenvironment immune characteristics associated with clinical prognosis and drug sensitivity analysis in stomach adenocarcinoma.

Aging (Albany NY). 2024-3-27

[6]
Identification of prognostic immune-related gene signature associated with tumor microenvironment of colorectal cancer.

BMC Cancer. 2021-8-8

[7]
Identification and validation of an immune prognostic signature in colorectal cancer.

Int Immunopharmacol. 2020-11

[8]
Developing a machine learning-based prognosis and immunotherapeutic response signature in colorectal cancer: insights from ferroptosis, fatty acid dynamics, and the tumor microenvironment.

Front Immunol. 2024

[9]
Integrated single-cell and bulk RNA-seq analysis identifies a prognostic T-cell signature in colorectal cancer.

Sci Rep. 2024-8-30

[10]
A New Genetic Signature of Lactate Metabolism-Associated Genes Predicting Clinically Distinctive Features and Tumor Microenvironment in Colorectal Cancer.

Cancer Control. 2024

引用本文的文献

[1]
Constructing a novel mitochondrial metabolism-related genes signature to evaluate tumor immune microenvironment and predict survival of colorectal cancer.

Front Med (Lausanne). 2025-7-8

[2]
Constructing a mitochondrial-related genes model based on machine learning for predicting the prognosis and therapeutic effect in colorectal cancer.

Discov Oncol. 2025-5-3

[3]
Effect of on immune function in patients with colorectal cancer: a systematic review and meta-analysis.

Front Pharmacol. 2025-4-3

本文引用的文献

[1]
The association between organised colorectal cancer screening strategies and reduction of its related mortality: a systematic review and meta-analysis.

BMC Cancer. 2024-3-21

[2]
Construction and validation of a prognostic signature based on seven endoplasmic reticulum stress-related lncRNAs for patients with head and neck squamous cell carcinoma.

Sci Rep. 2023-12-16

[3]
Anti-PD-1/PD-L1 therapy for colorectal cancer: Clinical implications and future considerations.

Transl Oncol. 2024-2

[4]
Increased Gene Expression of Is Associated with Poor Prognosis in Cervical Cancer.

Cells. 2023-10-27

[5]
p21 Prevents the Exhaustion of CD4 T Cells Within the Antitumor Immune Response Against Colorectal Cancer.

Gastroenterology. 2024-2

[6]
Integrating TCGA and single-cell sequencing data for colorectal cancer: a 10-gene prognostic risk assessment model.

Discov Oncol. 2023-9-13

[7]
Review of the Immune Checkpoint Inhibitors in the Context of Cancer Treatment.

J Clin Med. 2023-6-27

[8]
Th1 cells inducing IFNγ response improves immunotherapy efficacy in gastric cancer.

Chin J Cancer Res. 2023-6-30

[9]
Novel TCF21 pericyte subpopulation promotes colorectal cancer metastasis by remodelling perivascular matrix.

Gut. 2023-4

[10]
Multiomics Analysis Reveals Cuproptosis-Related Signature for Evaluating Prognosis and Immunotherapy Efficacy in Colorectal Cancer.

Cancers (Basel). 2023-1-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索