Suppr超能文献

基于机器学习的结直肠癌预后和免疫治疗反应特征的建立:来自铁死亡、脂肪酸动态和肿瘤微环境的见解。

Developing a machine learning-based prognosis and immunotherapeutic response signature in colorectal cancer: insights from ferroptosis, fatty acid dynamics, and the tumor microenvironment.

机构信息

Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.

Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.

出版信息

Front Immunol. 2024 Jul 15;15:1416443. doi: 10.3389/fimmu.2024.1416443. eCollection 2024.

Abstract

INSTRUCTION

Colorectal cancer (CRC) poses a challenge to public health and is characterized by a high incidence rate. This study explored the relationship between ferroptosis and fatty acid metabolism in the tumor microenvironment (TME) of patients with CRC to identify how these interactions impact the prognosis and effectiveness of immunotherapy, focusing on patient outcomes and the potential for predicting treatment response.

METHODS

Using datasets from multiple cohorts, including The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), we conducted an in-depth multi-omics study to uncover the relationship between ferroptosis regulators and fatty acid metabolism in CRC. Through unsupervised clustering, we discovered unique patterns that link ferroptosis and fatty acid metabolism, and further investigated them in the context of immune cell infiltration and pathway analysis. We developed the FeFAMscore, a prognostic model created using a combination of machine learning algorithms, and assessed its predictive power for patient outcomes and responsiveness to treatment. The FeFAMscore signature expression level was confirmed using RT-PCR, and ACAA2 progression in cancer was further verified.

RESULTS

This study revealed significant correlations between ferroptosis regulators and fatty acid metabolism-related genes with respect to tumor progression. Three distinct patient clusters with varied prognoses and immune cell infiltration were identified. The FeFAMscore demonstrated superior prognostic accuracy over existing models, with a C-index of 0.689 in the training cohort and values ranging from 0.648 to 0.720 in four independent validation cohorts. It also responses to immunotherapy and chemotherapy, indicating a sensitive response of special therapies (e.g., anti-PD-1, anti-CTLA4, osimertinib) in high FeFAMscore patients.

CONCLUSION

Ferroptosis regulators and fatty acid metabolism-related genes not only enhance immune activation, but also contribute to immune escape. Thus, the FeFAMscore, a novel prognostic tool, is promising for predicting both the prognosis and efficacy of immunotherapeutic strategies in patients with CRC.

摘要

指令

结直肠癌(CRC)对公共健康构成挑战,其发病率高。本研究探讨了 CRC 患者肿瘤微环境(TME)中 ferroptosis 与脂肪酸代谢之间的关系,以确定这些相互作用如何影响免疫治疗的预后和疗效,重点关注患者结局和治疗反应预测的潜力。

方法

使用来自多个队列的数据集,包括癌症基因组图谱(TCGA)和基因表达综合数据库(GEO),我们进行了深入的多组学研究,以揭示 CRC 中 ferroptosis 调节因子与脂肪酸代谢之间的关系。通过无监督聚类,我们发现了将 ferroptosis 和脂肪酸代谢联系起来的独特模式,并在免疫细胞浸润和通路分析的背景下进一步研究了它们。我们开发了 FeFAMscore,这是一种使用机器学习算法组合创建的预后模型,并评估了其对患者结局和治疗反应性的预测能力。使用 RT-PCR 验证了 FeFAMscore 特征表达水平,并进一步验证了 ACAA2 在癌症中的进展。

结果

本研究揭示了 ferroptosis 调节因子与脂肪酸代谢相关基因在肿瘤进展方面的显著相关性。根据免疫细胞浸润情况,鉴定出三个具有不同预后的患者亚群。FeFAMscore 在训练队列中的 C 指数为 0.689,在四个独立验证队列中的值范围为 0.648 至 0.720,其预后准确性优于现有模型。它还可以预测免疫治疗和化疗的反应,表明高 FeFAMscore 患者对特殊疗法(如抗 PD-1、抗 CTLA4、奥希替尼)有敏感反应。

结论

Ferroptosis 调节因子与脂肪酸代谢相关基因不仅增强了免疫激活,而且有助于免疫逃逸。因此,FeFAMscore 作为一种新的预后工具,有望预测 CRC 患者免疫治疗策略的预后和疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23b2/11284049/e6f12fa1f2ab/fimmu-15-1416443-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验