Mayya Ashwij
<a href="https://ror.org/043we9s22">Institut Jean Le Rond D'Alembert</a> (UMR 7190), <a href="https://ror.org/02en5vm52">Sorbonne Université</a> & <a href="https://ror.org/02feahw73">CNRS</a>, Paris, France.
Phys Rev E. 2024 Sep;110(3-2):035003. doi: 10.1103/PhysRevE.110.035003.
The intermittent damage evolution preceding the failure of heterogeneous brittle solids is well described by scaling laws. In deciphering its origins, failure is routinely interpreted as a critical transition. However at odds with expectations of universality, a large scatter in the value of the scaling exponents is reported during acoustic emission experiments. Here we numerically examine the precursory damage activity to reconcile the experimental observations with critical phenomena framework. Along with the strength of disorder, we consider an additional parameter that describes the progressive damageability of material elements at mesoscopic scale. This hardening behavior encapsulates the microfracturing processes taking place at lower length scales. We find that damage hardening can not only delay the final failure but also affect the preceding damage accumulation. When hardening is low, the precursory activity is strongly influenced by the strength of the disorder and is reminiscent of damage percolation. On the contrary, for large hardening, long-range elastic interactions prevail over disorder, ensuring a rather homogeneous evolution of the damage field in the material. The power-law statistics of the damage bursts is robust to the strength of the disorder and is reminiscent of the collective avalanche dynamics of elastic interfaces near the depinning transition. The existence of these two distinct universality classes also manifests as different values of the scaling exponent characterizing the divergence of the precursor size on approaching failure. Our finding sheds new light on the connection between the level of quasibrittleness of materials and the statistical features of the failure precursors. Finally, it also provides a more complete description of the acoustic precursors and thus paves the way for quantitative techniques of damage monitoring of structures-in-service.
非均质脆性固体破坏前的间歇性损伤演化可以通过标度律得到很好的描述。在探究其起源时,破坏通常被解释为一种临界转变。然而,与普遍性预期相悖的是,在声发射实验中报告了标度指数值存在很大的离散性。在此,我们通过数值方法研究前兆损伤活动,以将实验观测结果与临界现象框架相协调。除了无序强度外,我们还考虑了一个额外的参数,该参数描述了细观尺度下材料单元的渐进损伤能力。这种硬化行为概括了在较小长度尺度上发生的微破裂过程。我们发现损伤硬化不仅可以延迟最终破坏,还会影响之前的损伤积累。当硬化程度较低时,前兆活动受无序强度的强烈影响,类似于损伤渗流。相反,对于较大的硬化程度,长程弹性相互作用比无序作用更占主导,确保了材料中损伤场相当均匀的演化。损伤爆发的幂律统计对无序强度具有鲁棒性,类似于脱钉转变附近弹性界面的集体雪崩动力学。这两种不同普适类的存在也表现为表征临近破坏时前兆尺寸发散的标度指数的不同值。我们的发现为材料的准脆性水平与破坏前兆的统计特征之间的联系提供了新的见解。最后,它还为声学前兆提供了更完整的描述,从而为在役结构损伤监测的定量技术铺平了道路。