Rusanov Michael S, Zverev Vladimir S, Elfimova Ekaterina A
Department of Theoretical and Mathematical Physics, Institute of Natural Sciences and Mathematics, <a href="https://ror.org/00hs7dr46">Ural Federal University</a>, 51 Lenin Avenue, Ekaterinburg 620000, Russia.
Phys Rev E. 2024 Sep;110(3-1):034605. doi: 10.1103/PhysRevE.110.034605.
Information about the nonlinear magnetic response of dispersions of magnetic particles is the basis for biomedical applications. In this paper, using analytical and numerical methods, the third harmonic of the dynamic susceptibility of an ensemble of moving magnetic particles in an ac magnetic field with an arbitrary amplitude is studied, taking into account interparticle interactions. A simple approximation formula is proposed to predict the third harmonic as a function of two parameters: the Langevin susceptibility χ_{L}, which is used to estimate the particle dipole-dipole interactions, and the Langevin parameter ξ, which represents the ratio of the energy of the magnetic moment interacting with the magnetic field to the thermal energy. The derived approximation formula corresponds with the known single-particle theories in the limit case of a small particle's concentration and is valid for concentrated dispersions of magnetic particles (with the Langevin susceptibility up to χ_{L}≤3) in high-amplitude ac fields (with the Langevin parameter up to ξ≤10).
磁性颗粒分散体的非线性磁响应信息是生物医学应用的基础。本文采用解析和数值方法,研究了在考虑颗粒间相互作用的情况下,任意振幅交流磁场中运动磁性颗粒集合体动态磁化率的三次谐波。提出了一个简单的近似公式来预测三次谐波作为两个参数的函数:用于估计颗粒偶极 - 偶极相互作用的朗之万磁化率χₗ,以及表示与磁场相互作用的磁矩能量与热能之比的朗之万参数ξ。导出的近似公式在小颗粒浓度的极限情况下与已知的单颗粒理论相符,并且对于高振幅交流磁场(朗之万参数高达ξ≤10)中磁性颗粒的浓分散体(朗之万磁化率高达χₗ≤3)是有效的。