School of Public Health, <a href="https://ror.org/00zat6v61">Guangzhou Medical University</a>, Guangzhou, China.
School of Financial Mathematics and Statistics, <a href="https://ror.org/04grzdh47">Guangdong University of Finance</a>, Guangzhou, China.
Phys Rev E. 2024 Sep;110(3-1):034413. doi: 10.1103/PhysRevE.110.034413.
Transcription is a stochastic process that involves several downstream operations which make it difficult to model and infer transcription kinetics from mature RNA numbers in individual cell. However, recent advances in single-cell technologies have enabled a more precise measurement of the fluctuations of nascent RNA that closely reflect transcription kinetics. In this paper we introduce a general stochastic model to mimic nascent RNA kinetics with complex promoter architecture. We derive the exact distribution and moments of nascent RNA using queuing theory techniques, which provide valuable insights into the effect of the molecular memory created by the multistep activation and deactivation on the stochastic kinetics of nascent RNA. Moreover, based on the analytical results, we develop a statistical method to infer the promoter memory from stationary nascent RNA distributions. Data analysis of synthetic data and a realistic example, the HIV-1 gene, verifies the validity of this inference method.
转录是一个随机过程,涉及几个下游操作,这使得很难从单个细胞中成熟 RNA 的数量来模拟和推断转录动力学。然而,单细胞技术的最新进展使得更精确地测量新生 RNA 的波动成为可能,这些波动可以更准确地反映转录动力学。在本文中,我们引入了一个通用的随机模型,以模拟具有复杂启动子结构的新生 RNA 动力学。我们使用排队论技术推导出了新生 RNA 的精确分布和矩,这些结果为多步激活和失活所产生的分子记忆对新生 RNA 的随机动力学的影响提供了有价值的见解。此外,基于分析结果,我们开发了一种统计方法,从静止的新生 RNA 分布中推断启动子的记忆。对合成数据和一个实际例子(HIV-1 基因)的数据分析验证了这种推断方法的有效性。