Suppr超能文献

多孔软生物连续体中热力学与冲击波力学的通用相场混合表示

Universal phase-field mixture representation of thermodynamics and shock-wave mechanics in porous soft biologic continua.

作者信息

Clayton J D

机构信息

Terminal Effects Division, DEVCOM ARL, Aberdeen Proving Ground, Maryland 21005-5066, USA.

出版信息

Phys Rev E. 2024 Sep;110(3-2):035001. doi: 10.1103/PhysRevE.110.035001.

Abstract

A continuum mixture theory is formulated for large deformations, thermal effects, phase interactions, and degradation of soft biologic tissues suitable at high pressures and low to very high strain rates. Tissues consist of one or more solid and fluid phases and can demonstrate nonlinear anisotropic elastic, viscoelastic, thermoelastic, and poroelastic physics. Under extreme deformations or shock loading, tissues may fracture, tear, or rupture. Existing models do not account for all physics simultaneously, and most poromechanics and soft-tissue models assume incompressibility of some or all constituents, generally inappropriate for modeling shock waves or extreme compressions. Motivated by these prior limitations, a thermodynamically consistent formulation that combines a continuum theory of mixtures, compressible nonlinear anisotropic thermoelasticity, viscoelasticity, and phase-field mechanics of fracture is constructed to resolve the pertinent physics. A metric tensor of generalized Finsler space supplies geometric insight on effects of rearrangements of microstructure, for example degradation, growth, and remodeling. Shocks are modeled as singular surfaces. Hugoniot states and shock decay are analyzed: Solutions account for concurrent viscoelasticity, fracture, and interphase momentum and energy exchange not all contained in previous analyses. Suitability of the framework for representing blood, skeletal muscle, and liver is demonstrated by agreement with experimental data and observations across a range of loading rates and pressures. Insight into previously unresolved physics is obtained, for example importance of rate sensitivity of damage and quantification of effects of dissipation from viscoelasticity and phase interactions on shock decay.

摘要

针对大变形、热效应、相相互作用以及适用于高压和低至非常高应变率的软生物组织降解问题,建立了一种连续介质混合理论。组织由一种或多种固相和流体相组成,可表现出非线性各向异性弹性、粘弹性、热弹性和多孔弹性物理特性。在极端变形或冲击载荷下,组织可能会断裂、撕裂或破裂。现有模型无法同时考虑所有物理特性,并且大多数孔隙力学和软组织模型假定部分或所有成分不可压缩,这通常不适用于模拟冲击波或极端压缩情况。受这些先前限制的启发,构建了一种热力学一致的公式,该公式结合了混合物连续介质理论、可压缩非线性各向异性热弹性、粘弹性和断裂相场力学,以解决相关物理问题。广义芬斯勒空间的度量张量为微观结构重排的影响提供了几何见解,例如降解、生长和重塑。冲击被建模为奇异面。对雨贡纽状态和冲击衰减进行了分析:解考虑了并发的粘弹性、断裂以及相间动量和能量交换,而这些并非都包含在先前的分析中。通过与一系列加载速率和压力下的实验数据和观测结果相符,证明了该框架适用于表示血液、骨骼肌和肝脏。获得了对先前未解决的物理问题的见解,例如损伤速率敏感性的重要性以及粘弹性和相相互作用的耗散对冲击衰减影响的量化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验