Cirigliano Lorenzo, Castellano Claudio, Bianconi Ginestra
Dipartimento di Fisica Università "<a href="https://ror.org/02be6w209">Sapienza</a>", P. le A. Moro, 2, I-00185 Rome, Italy.
<a href="https://ror.org/01qb1sw63">Centro Ricerche Enrico Fermi</a>, Piazza del Viminale, 1, I-00184 Rome, Italy.
Phys Rev E. 2024 Sep;110(3-1):034302. doi: 10.1103/PhysRevE.110.034302.
Extended-range percolation is a robust percolation process that has relevance for quantum communication problems. In extended-range percolation nodes can be trusted or untrusted. Untrusted facilitator nodes are untrusted nodes that can still allow communication between trusted nodes if they lie on a path of distance at most R between two trusted nodes. In extended-range percolation the extended-range giant component (ERGC) includes trusted nodes connected by paths of trusted and untrusted facilitator nodes. Here, based on a message-passing algorithm, we develop a general theory of extended-range percolation, valid for arbitrary values of R as long as the networks are locally treelike. This general framework allows us to investigate the properties of extended-range percolation on interdependent multiplex networks. While the extended-range nature makes multiplex networks more robust, interdependency makes them more fragile. From the interplay between these two effects a rich phase diagram emerges including discontinuous phase transitions and reentrant phases. The theoretical predictions are in excellent agreement with extensive Monte Carlo simulations. The proposed exactly solvable model constitutes a fundamental reference for the study of models defined through properties of extended-range paths.
扩展范围渗流是一种稳健的渗流过程,与量子通信问题相关。在扩展范围渗流中,节点可以是可信的或不可信的。不可信的促进节点是指那些即使它们位于两个可信节点之间距离至多为R的路径上,仍能允许可信节点之间进行通信的不可信节点。在扩展范围渗流中,扩展范围巨组件(ERGC)包括通过可信和不可信促进节点的路径连接的可信节点。在此,基于一种消息传递算法,我们发展了一种扩展范围渗流的一般理论,只要网络是局部树状的,该理论对任意R值均有效。这个一般框架使我们能够研究相互依赖的多重网络上扩展范围渗流的性质。虽然扩展范围的性质使多重网络更稳健,但相互依赖性使它们更脆弱。从这两种效应之间的相互作用中出现了一个丰富的相图,包括不连续相变和再入相。理论预测与广泛的蒙特卡罗模拟结果非常吻合。所提出的精确可解模型构成了通过扩展范围路径的性质定义的模型研究的基本参考。