Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, 30200 Bagnols-sur-Cèze, France.
Laboratoire Innovations Technologiques Pour la Détection et le Diagnostic (Li2D), Université de Montpellier, 30207 Bagnols sur Cèze, France.
J Proteome Res. 2024 Nov 1;23(11):5203-5208. doi: 10.1021/acs.jproteome.4c00184. Epub 2024 Oct 19.
Metaproteomics is a powerful tool to characterize how microbiota function by analyzing their proteic content by tandem mass spectrometry. Given the complexity of these samples, accurately assessing their taxonomical composition without prior information based solely on peptide sequences remains a challenge. Here, we present LineageFilter, a new python-based AI software for refined proteotyping of complex samples using metaproteomics interpreted data and machine learning. Given a tentative list of taxa, their abundances, and the scores associated with their identified peptides, LineageFilter computes a comprehensive set of features for each identified taxon at all taxonomical ranks. Its machine-learning model then assesses the likelihood of each taxon's presence based on these features, enabling improved proteotyping and sample-specific database construction.
代谢蛋白质组学是一种强大的工具,可通过串联质谱分析其蛋白质含量来描述微生物群落的功能。鉴于这些样本的复杂性,仅基于肽序列而不事先提供信息,准确评估其分类组成仍然是一个挑战。在这里,我们介绍了 LineageFilter,这是一种新的基于 Python 的人工智能软件,用于使用代谢蛋白质组学解释数据和机器学习对复杂样本进行精细化蛋白质组学分析。给定一个暂定的分类群列表、它们的丰度以及与其鉴定肽相关的分数,LineageFilter 会为每个鉴定的分类群在所有分类等级计算一组全面的特征。然后,其机器学习模型根据这些特征评估每个分类群存在的可能性,从而实现改进的蛋白质组学和特定于样本的数据库构建。