Suppr超能文献

注意力诱导双卷积胶囊网络(AIDC-CN):一种用于运动想象分类的深度学习框架。

Attention Induced Dual Convolutional-Capsule Network (AIDC-CN): A deep learning framework for motor imagery classification.

作者信息

Chowdhury Ritesh Sur, Bose Shirsha, Ghosh Sayantani, Konar Amit

机构信息

Artificial Intelligence Laboratory, Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, 700032, West Bengal, India.

Department of Informatics, Technical University of Munich, Munich, Bavaria 85748, Germany.

出版信息

Comput Biol Med. 2024 Dec;183:109260. doi: 10.1016/j.compbiomed.2024.109260. Epub 2024 Oct 18.

Abstract

In recent times, Electroencephalography (EEG)-based motor imagery (MI) decoding has garnered significant attention due to its extensive applicability in healthcare, including areas such as assistive robotics and rehabilitation engineering. Nevertheless, the decoding of EEG signals presents considerable challenges owing to their inherent complexity, non-stationary characteristics, and low signal-to-noise ratio. Notably, deep learning-based classifiers have emerged as a prominent focus for addressing the EEG signal decoding process. This study introduces a novel deep learning classifier named the Attention Induced Dual Convolutional-Capsule Network (AIDC-CN) with the specific aim of accurately categorizing various motor imagination class labels. To enhance the classifier's performance, a dual feature extraction approach leveraging spectrogram and brain connectivity networks has been employed, diversifying the feature set in the classification task. The main highlights of the proposed AIDC-CN classifier includes the introduction of a dual convolution layer to handle the brain connectivity and spectrogram features, addition of a novel self-attention module (SAM) to accentuate the relevant parts of the convolved spectrogram features, introduction of a new cross-attention module (CAM) to refine the outputs obtained from the dual convolution layers and incorporation of a Gaussian Error Linear Unit (GELU) based dynamic routing algorithm to strengthen the coupling among the primary and secondary capsule layers. Performance analysis undertaken on four public data sets depict the superior performance of the proposed model with respect to the state-of-the-art techniques. The code for this model is available at https://github.com/RiteshSurChowdhury/AIDC-CN.

摘要

近年来,基于脑电图(EEG)的运动想象(MI)解码因其在医疗保健领域的广泛应用而备受关注,包括在辅助机器人技术和康复工程等领域。然而,由于EEG信号固有的复杂性、非平稳特性和低信噪比,对其进行解码面临着相当大的挑战。值得注意的是,基于深度学习的分类器已成为解决EEG信号解码过程的一个突出焦点。本研究引入了一种名为注意力诱导双卷积胶囊网络(AIDC-CN)的新型深度学习分类器,其具体目标是准确分类各种运动想象类别标签。为了提高分类器的性能,采用了一种利用频谱图和脑连接网络的双特征提取方法,使分类任务中的特征集多样化。所提出的AIDC-CN分类器的主要亮点包括引入双卷积层来处理脑连接和频谱图特征,添加新型自注意力模块(SAM)以突出卷积频谱图特征的相关部分,引入新的交叉注意力模块(CAM)以细化从双卷积层获得的输出,以及纳入基于高斯误差线性单元(GELU)的动态路由算法以加强初级和次级胶囊层之间的耦合。在四个公共数据集上进行的性能分析表明,所提出的模型相对于现有技术具有优越的性能。该模型的代码可在https://github.com/RiteshSurChowdhury/AIDC-CN获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验