Suppr超能文献

Multi-targets cleavage of BmNPV genome through genome-wide repeat sequence using CRISPR/Cas9 antiviral system.

作者信息

Liu Yujia, Yang Xu, Wu Ping, Guo Xijie, Liu Zulian, Huang Yongping, Xu Xia

机构信息

School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.

Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China.

出版信息

Insect Sci. 2025 Aug;32(4):1174-1184. doi: 10.1111/1744-7917.13462. Epub 2024 Oct 20.

Abstract

The escalating severity of Bombyx mori nuclear polyhedrosis virus (BmNPV) infections poses significant challenges to the silkworm industry, especially when massive production shifts occur from the eastern regions to western regions with lower labor costs. Education and experience levels are different and disease control is badly needed. To solve the problems, we have developed an innovative CRISPR/Cas9 system specifically targeting BmNPV to enhance viral resistance. For the system, we selected BmNPV genes linked to virus replication and proliferation as targets, designing 2 sites for each gene. Mutating the target sequence renders the system incapable of efficiently cleaving the virus genome, hence decreasing cleavage efficiency. We conducted a search for "NGG" or "CCN" target sequences in the BmNPV genome, excluding non-recurring and potential targets in the B. mori genome. We successfully identified 2 distinct target sequences in the BmNPV genome-one being repeated 12 times and the other three times. These sequences lead to fragmentation of virus genome into multiple large segments that are difficult to repair. Transgenic silkworms demonstrate robust resistance to viruses, significantly boosting their survival rates compared with wild-type silkworms under various virus infection concentrations. Our system efficiently targets dozens of viral genomes with just 2 sequences, minimizing transposable elements while ensuring cutting effectiveness. This marks a pioneering advancement by using repetitive elements within the virus genome for targeted CRISPR cleavage, aiming for antiviral effects through genome fragmentation rather than disrupting essential viral genes. Our research introduces innovative concepts to CRISPR antiviral investigations and shows promise for the practical application of gene editing in industrial silkworm strains.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验