Suppr超能文献

基于子域自适应和最小类别混淆的多源域转移网络用于脑电情感识别

Multi-source domain transfer network based on subdomain adaptation and minimum class confusion for EEG emotion recognition.

作者信息

Zhu Lei, Xu Mengxuan, Huang Aiai, Zhang Jianhai, Tan Xufei

机构信息

School of Automation, Hangzhou Dianzi University, Hangzhou, China.

School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China.

出版信息

Comput Methods Biomech Biomed Engin. 2024 Oct 21:1-13. doi: 10.1080/10255842.2024.2417212.

Abstract

Electroencephalogram (EEG) signals, which objectively reflect the state of the brain, are widely favored in emotion recognition research. However, the presence of cross-session and cross-subject variation in EEG signals has hindered the practical implementation of EEG-based emotion recognition technologies. In this article, we propose a multi-source domain transfer method based on subdomain adaptation and minimum class confusion (MS-SAMCC) in response to the addressed issue. First, we introduce the mix-up data augmentation technique to generate augmented samples. Next, we propose a minimum class confusion subdomain adaptation method (MCCSA) as a sub-module of the multi-source domain adaptation module. This approach enables global alignment between each source domain and the target domain, while also achieving alignment among individual subdomains within them. Additionally, we employ minimum class confusion (MCC) as a regularizer for this sub-module. We performed experiments on SEED, SEED IV, and FACED datasets. In the cross-subject experiments, our method achieved mean classification accuracies of 87.14% on SEED, 63.24% on SEED IV, and 42.07% on FACED. In the cross-session experiments, our approach obtained average classification accuracies of 94.20% on SEED and 71.66% on SEED IV. These results demonstrate that the MS-SAMCC approach proposed in this study can effectively address EEG-based emotion recognition tasks.

摘要

脑电图(EEG)信号能够客观反映大脑状态,在情绪识别研究中受到广泛青睐。然而,EEG信号中存在的跨时段和跨个体差异阻碍了基于EEG的情绪识别技术的实际应用。针对这一问题,本文提出了一种基于子域自适应和最小类混淆的多源域迁移方法(MS-SAMCC)。首先,我们引入混合数据增强技术来生成增强样本。接下来,我们提出了一种最小类混淆子域自适应方法(MCCSA)作为多源域自适应模块的子模块。这种方法能够实现每个源域与目标域之间的全局对齐,同时也能实现它们内部各个子域之间的对齐。此外,我们将最小类混淆(MCC)用作该子模块的正则化器。我们在SEED、SEED IV和FACED数据集上进行了实验。在跨个体实验中,我们的方法在SEED上的平均分类准确率达到87.14%,在SEED IV上为63.24%,在FACED上为42.07%。在跨时段实验中,我们的方法在SEED上的平均分类准确率为94.20%,在SEED IV上为71.66%。这些结果表明,本研究提出的MS-SAMCC方法能够有效解决基于EEG的情绪识别任务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验