Suppr超能文献

病例报告:利用可穿戴数据对肺癌进行动态个性化生理监测

Case report: dynamic personalized physiological monitoring in lung cancer using wearable data.

作者信息

Bliss Joshua W, Underwood Whitney P, Carlson Adele M, Scott Jessica M, Daly Robert, Li Bob T, Drilon Alexander, Stetson Peter, Boutros Paul C, Jones Lee W

机构信息

New York Presbyterian, Weill Cornell Medicine, New York, NY, United States.

Department of Medicine, Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States.

出版信息

Front Oncol. 2024 Oct 4;14:1420888. doi: 10.3389/fonc.2024.1420888. eCollection 2024.

Abstract

Pretreatment prognostication, on-treatment monitoring, and early detection of physiological symptoms are considerable challenges in cancer. We describe the feasibility of high-resolution wearable data (steps per day, walking speed) to longitudinally profile physiological trajectories extracted from Apple Health data in three patients with lung cancer from diagnosis through cancer treatment after obtaining informed consent. We used descriptive statistics to describe our approach of building longitudinal physiological profiles. The wearable data monitoring period ranged from 58 to 135 weeks, with between 34,319 and 103,535 distinct digital physiological measures collected during this period-the equivalent to 41 measures per day/patient. Longitudinal profiling revealed that wearable data accurately captured physiological changes linked with clinical events such as surgery and hospitalizations as well as initiation (and cessation) of systemic cancer treatment in all three patients. These findings suggest that wearable devices could play a critical role in the management of lung cancer, although larger studies are needed to confirm these preliminary observations and validate their generalizability. Wearable devices hold significant promise for the development of personalized "digital biomarkers," which may enhance risk stratification and management in oncology.

摘要

治疗前的预后评估、治疗期间的监测以及生理症状的早期检测是癌症治疗中面临的重大挑战。在获得知情同意后,我们描述了利用高分辨率可穿戴数据(每日步数、步行速度)对三名肺癌患者从诊断到癌症治疗期间从苹果健康数据中提取的生理轨迹进行纵向分析的可行性。我们使用描述性统计来描述构建纵向生理概况的方法。可穿戴数据监测期从58周到135周不等,在此期间收集了34319至103535个不同的数字生理指标——相当于每位患者每天41个指标。纵向分析表明,可穿戴数据准确捕捉了与手术、住院等临床事件以及所有三名患者全身癌症治疗的开始(和停止)相关的生理变化。这些发现表明,可穿戴设备在肺癌管理中可能发挥关键作用,不过需要更大规模的研究来证实这些初步观察结果并验证其普遍性。可穿戴设备在开发个性化“数字生物标志物”方面具有巨大潜力,这可能会加强肿瘤学中的风险分层和管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff7/11486691/bea4cd105374/fonc-14-1420888-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验