Suppr超能文献

代谢综合征患者中心肾生物标志物与死亡率的关联:一项来自美国国家健康与营养检查调查(NHANES)的前瞻性队列研究

Association of cardiorenal biomarkers with mortality in metabolic syndrome patients: A prospective cohort study from NHANES.

作者信息

Gao Qianyi, Jia Shuanglong, Mo Xingbo, Zhang Huan

机构信息

Department of Epidemiology Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University Suzhou Jiangsu China.

Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University Suzhou Jiangsu China.

出版信息

Chronic Dis Transl Med. 2024 Sep 3;10(4):327-339. doi: 10.1002/cdt3.149. eCollection 2024 Dec.

Abstract

OBJECTIVES

Approximately 20%-25% of the global adult population is affected by metabolic syndrome (MetS), highlighting its status as a major public health concern. This study aims to investigate the predictive value of cardiorenal biomarkers on mortality among patients with MetS, thus optimizing treatment strategies.

METHODS

Utilizing data from the National Health and Nutrition Examination Survey (NHANES) cycles between 1999 and 2004, we conducted a prospective cohort study involving 2369 participants diagnosed with MetS. We evaluated the association of cardiac and renal biomarkers with all-cause and cardiovascular disease (CVD) mortality, employing weighted Cox proportional hazards models. Furthermore, machine learning models were used to predict mortality outcomes based on these biomarkers.

RESULTS

Among 2369 participants in the study cohort, over a median follow-up period of 17.1 years, 774 (32.67%) participants died, including 260 (10.98%) from CVD. The highest quartiles of cardiac biomarkers (N-terminal pro-B-type natriuretic peptide [NT-proBNP]) and renal biomarkers (beta-2 microglobulin, [β2M]) were significantly associated with increased risks of all-cause mortality (hazard ratios [HRs] ranging from 1.94 to 2.06) and CVD mortality (HRs up to 2.86), after adjusting for confounders. Additionally, a U-shaped association was observed between high-sensitivity cardiac troponin T (Hs-cTnT), creatinine (Cr), and all-cause mortality in patients with MetS. Machine learning analyses identified Hs-cTnT, NT-proBNP, and β2M as important predictors of mortality, with the CatBoost model showing superior performance (area under the curve [AUC] = 0.904).

CONCLUSION

Cardiac and renal biomarkers are significant predictors of mortality in MetS patients, with Hs-cTnT, NT-proBNP, and β2M emerging as crucial indicators. Further research is needed to explore intervention strategies targeting these biomarkers to improve clinical outcomes.

摘要

目的

全球约20%-25%的成年人口受代谢综合征(MetS)影响,凸显其作为主要公共卫生问题的地位。本研究旨在调查心肾生物标志物对MetS患者死亡率的预测价值,从而优化治疗策略。

方法

利用1999年至2004年国家健康与营养检查调查(NHANES)周期的数据,我们进行了一项前瞻性队列研究,纳入2369名被诊断为MetS的参与者。我们采用加权Cox比例风险模型评估心脏和肾脏生物标志物与全因死亡率和心血管疾病(CVD)死亡率的关联。此外,使用机器学习模型基于这些生物标志物预测死亡结局。

结果

在研究队列的2369名参与者中,中位随访期为17.1年,774名(32.67%)参与者死亡,其中260名(10.98%)死于CVD。在调整混杂因素后,心脏生物标志物(N末端B型利钠肽原[NT-proBNP])和肾脏生物标志物(β2微球蛋白[β2M])的最高四分位数与全因死亡率增加风险(风险比[HRs]为1.94至2.06)和CVD死亡率增加风险(HRs高达2.86)显著相关。此外,在MetS患者中,高敏心肌肌钙蛋白T(Hs-cTnT)、肌酐(Cr)与全因死亡率之间观察到U型关联。机器学习分析确定Hs-cTnT、NT-proBNP和β2M为死亡率的重要预测指标,CatBoost模型表现出卓越性能(曲线下面积[AUC]=0.904)。

结论

心脏和肾脏生物标志物是MetS患者死亡率的重要预测指标,Hs-cTnT、NT-proBNP和β2M成为关键指标。需要进一步研究探索针对这些生物标志物的干预策略以改善临床结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9515/11483540/0c7f16f09c34/CDT3-10-327-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验