Suppr超能文献

利用参数空间特征和计算模拟增强心肌应变数据的激活时间和收缩性提取。

Enhanced Extraction of Activation Time and Contractility From Myocardial Strain Data Using Parameter Space Features and Computational Simulations.

机构信息

Medical Faculty, University of Ljubljana, Ljubljana, Slovenia.

出版信息

ScientificWorldJournal. 2024 Oct 12;2024:1059164. doi: 10.1155/2024/1059164. eCollection 2024.

Abstract

A computational model enables the extraction of two critical myocardial tissue properties: activation time (AT) and contractility (Con) from recorded cardiac strains. However, interference between these parameters reduces the precision and accuracy of the extraction process. This study investigates whether leveraging features in the parameter space can enhance parameter extraction. We utilized a computational model to simulate sarcomere mechanics, creating a parameter space grid of 41 × 41 AT and Con pairs. Each pair generated a simulated strain pattern, and by scanning the grid, we identified cohorts of similar strain patterns for each simulation. These cohorts were represented as binary images-synthetic fingerprints-where the position and shape of each blob indicated extraction uniqueness. We also generated a measurement fingerprint for a strain pattern from a patient with left bundle branch block and compared it to the synthetic fingerprints to calculate a proximity map based on their similarity. This approach allowed us to extract AT and Con using both the measurement fingerprint and the proximity map, corresponding to simple optimization and enhanced parameter extraction methods, respectively. Each synthetic fingerprint consisted of a single connected blob whose size and shape varied characteristically within the parameter space. The AT values extracted from the measurement fingerprint and the proximity map ranged from -59 to 19 ms and from -16 to 14 ms, respectively, while Con values ranged from 48% to 110% and from 85% to 110%, respectively. This study demonstrates that similarity in simulations leads to an asymmetric distribution of parameter values in the parameter space. By using a proximity map, this distortion is considered, significantly improving the accuracy of parameter extraction.

摘要

一个计算模型能够从记录的心脏应变中提取两个关键的心肌组织特性

激活时间 (AT) 和收缩性 (Con)。然而,这些参数之间的干扰会降低提取过程的精度和准确性。本研究探讨了利用参数空间中的特征是否可以增强参数提取。我们利用计算模型模拟肌节力学,创建了一个由 41x41 个 AT 和 Con 对组成的参数空间网格。每一对都会生成一个模拟应变模式,通过扫描网格,我们为每个模拟确定了具有相似应变模式的群组。这些群组表示为二进制图像——合成指纹——其中每个斑点的位置和形状表示提取的独特性。我们还为一位患有左束支传导阻滞的患者的应变模式生成了一个测量指纹,并将其与合成指纹进行比较,根据它们的相似性计算一个接近度图。这种方法允许我们使用测量指纹和接近度图分别提取 AT 和 Con,对应于简单优化和增强参数提取方法。每个合成指纹由一个单一的连通斑点组成,其大小和形状在参数空间内特征变化。从测量指纹和接近度图中提取的 AT 值分别在-59 到 19 ms 和-16 到 14 ms 之间,而 Con 值分别在 48%到 110%和 85%到 110%之间。本研究表明,模拟中的相似性导致参数空间中参数值的不对称分布。通过使用接近度图,可以考虑这种失真,从而显著提高参数提取的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f89f/11490350/9c30a7a0df17/TSWJ2024-1059164.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验