Department of Ophthalmology and Visual Neurosciences, University of Minnesota.
High Throughput Screening Laboratory, Institute for Therapeutics Discovery & Development, University of Minnesota.
J Vis Exp. 2024 Oct 4(212). doi: 10.3791/67036.
Distribution of dietary vitamin A/all-trans retinol (ROL) throughout the body is critical for maintaining retinoid function in peripheral tissues and generating the retinylidene protein for visual function. RBP4-ROL is the complex of ROL with retinol-binding protein 4 (RBP4), which is present in the blood. Two membrane receptors, Retinol Binding Protein 4 Receptor 2 (RBPR2) in the liver and STimulated by Retinoic Acid 6 Retinol (STRA6) in the eye, bind circulatory RBP4 and this mechanism is critical for internalizing ROL into cells. Establishing methods to investigate receptor-ligand kinetics is essential in understanding the physiological function of vitamin A receptors for retinoid homeostasis. Using Surface Plasmon Resonance (SPR) assays, we can analyze the binding affinities and kinetic parameters of vitamin A membrane receptors with its physiological ligand RBP4. These methodologies can reveal new structural and biochemical information of RBP4-binding motifs in RBPR2 and STRA6, which are critical for understanding pathological states of vitamin A deficiency. In the eye, internalized ROL is metabolized to 11-cis retinal, the visual chromophore that binds to opsin in photoreceptors to form the retinylidene protein, rhodopsin. The absorbance of light causes the cis-to-trans isomerization of 11-cis retinal, inducing conformational changes in rhodopsin and the subsequent activation of the phototransduction cascade. Decreased concentrations of serum and ocular ROL can impact retinylidene protein formation, which in turn can cause rhodopsin mislocalization, apoprotein opsin accumulation, night blindness, and photoreceptor outer segment degeneration, leading to Retinitis Pigmentosa or Leber Congenital Amaurosis. Therefore, spectrophotometric methodologies to quantify the G protein-coupled receptor opsin-11-cis retinal complex in the retina are critical for understanding mechanisms of retinal cell degeneration in the above-mentioned pathological states. With these comprehensive methodologies, investigators will be able to better assess dietary vitamin A supply in maintaining systemic and ocular retinoid homeostasis, which is critical for generating and maintaining retinylidene protein concentrations in photoreceptors, which is critical for sustaining visual function in humans.
维生素 A/全反式视黄醇(ROL)在体内的分布对于维持外周组织中的类视黄醇功能和生成视觉功能的视黄醛蛋白至关重要。RBP4-ROL 是 ROL 与视黄醇结合蛋白 4(RBP4)的复合物,存在于血液中。两种膜受体,肝脏中的视黄醇结合蛋白 4 受体 2(RBPR2)和眼睛中的视黄酸 6 视黄醇刺激(STRA6),结合循环中的 RBP4,这种机制对于将 ROL 内化到细胞中至关重要。建立研究受体-配体动力学的方法对于理解维生素 A 受体在类视黄醇动态平衡中的生理功能至关重要。使用表面等离子体共振(SPR)分析,可以分析维生素 A 膜受体与其生理配体 RBP4 的结合亲和力和动力学参数。这些方法可以揭示 RBPR2 和 STRA6 中 RBP4 结合基序的新结构和生化信息,这对于理解维生素 A 缺乏的病理状态至关重要。在眼睛中,内化的 ROL 被代谢为 11-顺式视黄醛,这是一种视觉色素,与光感受器中的视蛋白结合形成视黄醛蛋白,视紫红质。光的吸收引起 11-顺式视黄醛的顺式-反式异构化,诱导视紫红质的构象变化,随后激活光转导级联反应。血清和眼部 ROL 浓度的降低会影响视黄醛蛋白的形成,进而导致视紫红质定位异常、脱辅基视蛋白积累、夜盲症和光感受器外节退化,导致色素性视网膜炎或莱伯先天性黑蒙。因此,定量视网膜中 G 蛋白偶联受体视蛋白-11-顺式视黄醛复合物的分光光度方法对于理解上述病理状态下视网膜细胞退化的机制至关重要。有了这些综合方法,研究人员将能够更好地评估饮食中维生素 A 的供应情况,以维持全身和眼部类视黄醇的动态平衡,这对于生成和维持光感受器中的视黄醛蛋白浓度至关重要,这对于维持人类的视觉功能至关重要。