John T. Milliken Department of Medicine, Division of Nutritional Sciences and Obesity Medicine, Washington University School of Medicine; Nutrition and Obesity Research Center, Cellular and Molecular Biology Core, Washington University School of Medicine.
John T. Milliken Department of Medicine, Division of Nutritional Sciences and Obesity Medicine, Washington University School of Medicine; Nutrition and Obesity Research Center, Animal Model Research Core, Washington University School of Medicine;
J Vis Exp. 2024 Oct 4(212). doi: 10.3791/66834.
Mitochondrial function, a cornerstone of cellular energy production, is critical for maintaining metabolic homeostasis. Its dysfunction in skeletal muscle is linked to prevalent metabolic disorders (e.g., diabetes and obesity), muscular dystrophies, and sarcopenia. While there are many techniques to evaluate mitochondrial content and morphology, the hallmark method to assess mitochondrial function is the measurement of mitochondrial oxidative phosphorylation (OXPHOS) by respirometry. Quantification of mitochondrial OXPHOS provides insight into the efficiency of mitochondrial oxidative energy production and cellular bioenergetics. A high-resolution respirometer provides highly sensitive, robust measurements of mitochondrial OXPHOS in permeabilized muscle fibers by measuring real-time changes in mitochondrial oxygen consumption rate. The use of permeabilized muscle fibers, as opposed to isolated mitochondria, preserves mitochondrial networks, maintains mitochondrial membrane integrity, and ultimately allows for more physiologically relevant measurements. This system also allows for the measurement of fuel preference and metabolic flexibility - dynamic aspects of muscle energy metabolism. Here, we provide a comprehensive guide for mitochondrial OXPHOS measurements in human and mouse skeletal muscle fibers using a high-resolution respirometer. Skeletal muscle groups are composed of different fiber types that vary in their mitochondrial fuel preference and bioenergetics. Using a high-resolution respirometer, we describe methods for evaluating both aerobic glycolytic and fatty acid substrates to assess fuel preference and metabolic flexibility in a fiber-type-dependent manner. The protocol is versatile and applicable to both human and rodent muscle fibers. The goal is to enhance the reproducibility and accuracy of mitochondrial function assessments, which will improve our understanding of an organelle important to muscle health.
线粒体功能是细胞能量产生的基石,对于维持代谢稳态至关重要。其在骨骼肌中的功能障碍与常见的代谢紊乱(如糖尿病和肥胖症)、肌肉疾病和肌肉减少症有关。虽然有许多技术可用于评估线粒体含量和形态,但评估线粒体功能的标志性方法是通过呼吸测量法测量线粒体氧化磷酸化(OXPHOS)。线粒体 OXPHOS 的量化提供了对线粒体氧化能量产生和细胞生物能量学效率的深入了解。高分辨率呼吸计通过测量线粒体耗氧量的实时变化,为透化肌肉纤维中的线粒体 OXPHOS 提供了高度敏感、稳健的测量。与分离的线粒体相比,使用透化肌肉纤维保留了线粒体网络,维持了线粒体膜的完整性,并最终允许进行更具生理相关性的测量。该系统还允许测量燃料偏好和代谢灵活性——肌肉能量代谢的动态方面。在这里,我们提供了使用高分辨率呼吸计测量人类和小鼠骨骼肌纤维中线粒体 OXPHOS 的综合指南。骨骼肌群由不同的纤维类型组成,这些纤维类型在其线粒体燃料偏好和生物能量学方面存在差异。使用高分辨率呼吸计,我们描述了评估有氧糖酵解和脂肪酸底物的方法,以依赖于纤维类型的方式评估燃料偏好和代谢灵活性。该方案具有通用性,适用于人类和啮齿动物的肌肉纤维。目的是提高线粒体功能评估的重现性和准确性,从而加深我们对这一对于肌肉健康很重要的细胞器的理解。