Li Shengyao, Deng Ya, Hu Dianyi, Zhu Chao, Yang Zherui, Tian Wanghao, Wang Xueyan, Yue Ming, Wu Qiong, Liu Zheng, Renshaw Wang Xiao
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
ACS Nano. 2024 Nov 12;18(45):31076-31084. doi: 10.1021/acsnano.4c07951. Epub 2024 Oct 21.
Nonreciprocal electrical transport, characterized by an asymmetric relationship between the current and voltage, plays a crucial role in modern electronic industries. Recent studies have extended this phenomenon to superconductors, introducing the concept of the superconducting diode effect (SDE). The SDE is characterized by unequal critical supercurrents along opposite directions. Due to the requirement on broken inversion symmetry, the SDE is commonly accompanied by electrical magnetochiral anisotropy (eMCA) in the resistive state. Achieving a magnetic-field-free SDE with field tunability is pivotal for advancements in superconductor devices. Conventionally, field-free SDE has been achieved in Josephson junctions by intentionally intercalating an asymmetric barrier layer. Alternatively, internal magnetism was employed. Both approaches pose challenges in the selection of superconductors and fabrication processes, thereby impeding the development of SDE. Here, we present a field-free SDE in FeTeSe (FTS) junction with eMCA, a phenomenon absent in FTS single nanosheets. The field-free property is associated with the presence of a gradient oxide layer on the upper surface of each FTS nanosheet, while eMCA is linked to spin splitting arising from the absence of inversion symmetry. Both SDE and eMCA respond to magnetic fields with distinct temperature dependencies. This work presents a versatile and straightforward strategy for advancing superconducting electronics.
非互易电输运,其特征在于电流与电压之间的不对称关系,在现代电子工业中起着至关重要的作用。最近的研究已将这一现象扩展到超导体,引入了超导二极管效应(SDE)的概念。SDE的特征是沿相反方向的临界超电流不相等。由于对破坏空间反演对称性的要求,SDE在电阻状态下通常伴随着电磁手性各向异性(eMCA)。实现具有磁场可调性的无磁场SDE对于超导器件的发展至关重要。传统上,通过有意插入不对称势垒层在约瑟夫森结中实现了无磁场SDE。或者,采用了内禀磁性。这两种方法在超导体的选择和制造工艺方面都带来了挑战,从而阻碍了SDE的发展。在此,我们展示了在具有eMCA的FeTeSe(FTS)结中存在无磁场SDE,这是FTS单纳米片中不存在的一种现象。无磁场特性与每个FTS纳米片上表面存在的梯度氧化层有关,而eMCA则与因缺乏空间反演对称性而产生的自旋分裂有关。SDE和eMCA对磁场的响应都具有明显的温度依赖性。这项工作为推进超导电子学提出了一种通用且直接的策略。