Suppr超能文献

通过对短肽和 RNA 片段的原子模拟揭示核蛋白的相分离亲和力。

Nucleoprotein Phase-Separation Affinities Revealed via Atomistic Simulations of Short Peptide and RNA Fragments.

机构信息

Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.

Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 5011, United States.

出版信息

J Phys Chem Lett. 2024 Oct 31;15(43):10811-10817. doi: 10.1021/acs.jpclett.4c02654. Epub 2024 Oct 21.

Abstract

Liquid-liquid phase separation of proteins and nucleic acids into condensate phases is a versatile mechanism for ensuring the compartmentalization of cellular biochemistry. RNA molecules play critical roles in these condensates, particularly in transcriptional regulation and stress responses, exhibiting a wide range of thermodynamic and dynamic behaviors. However, deciphering the molecular grammar that governs the stability and dynamics of protein-RNA condensates remains challenging due to the multicomponent and heterogeneous nature of condensates. In this study, we employ atomistic simulations of 20 distinct mixtures containing minimal RNA and peptide fragments which allows us to dissect the phase-separating affinities of all 20 amino acids in the presence of RNA. Our findings elucidate chemically specific interactions, hydration profiles, and ionic effects that synergistically promote or suppress protein-RNA phase separation. We map a ternary phase diagram of interactions, identifying four distinct groups of residues that promote, maintain, suppress, and disrupt protein-RNA clusters.

摘要

蛋白质和核酸的液-液相分离成凝聚相是确保细胞生物化学区室化的一种通用机制。RNA 分子在这些凝聚体中起着关键作用,特别是在转录调控和应激反应中,表现出广泛的热力学和动力学行为。然而,由于凝聚体的多组分和异质性质,破译控制蛋白质-RNA 凝聚体稳定性和动力学的分子语法仍然具有挑战性。在这项研究中,我们使用包含最小 RNA 和肽片段的 20 种不同混合物的原子模拟,这使我们能够在 RNA 存在的情况下剖析所有 20 种氨基酸的相分离亲和力。我们的研究结果阐明了化学特异性相互作用、水合特性和离子效应,这些协同作用促进或抑制蛋白质-RNA 的相分离。我们绘制了一个相互作用的三元相图,确定了四个不同的残基组,它们分别促进、维持、抑制和破坏蛋白质-RNA 簇。

相似文献

1
Nucleoprotein Phase-Separation Affinities Revealed via Atomistic Simulations of Short Peptide and RNA Fragments.
J Phys Chem Lett. 2024 Oct 31;15(43):10811-10817. doi: 10.1021/acs.jpclett.4c02654. Epub 2024 Oct 21.
3
Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently.
Biophys J. 2023 Jul 25;122(14):2973-2987. doi: 10.1016/j.bpj.2023.03.006. Epub 2023 Mar 6.
4
Submillisecond Atomistic Molecular Dynamics Simulations Reveal Hydrogen Bond-Driven Diffusion of a Guest Peptide in Protein-RNA Condensate.
J Phys Chem B. 2024 Mar 14;128(10):2347-2359. doi: 10.1021/acs.jpcb.3c08126. Epub 2024 Feb 28.
5
Phase transition of RNA-protein complexes into ordered hollow condensates.
Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15650-15658. doi: 10.1073/pnas.1922365117. Epub 2020 Jun 22.
7
Phase separation of multicomponent peptide mixtures into dehydrated clusters with hydrophilic cores.
Biophys J. 2024 Feb 6;123(3):349-360. doi: 10.1016/j.bpj.2023.12.027. Epub 2024 Jan 1.
8
Arginine multivalency stabilizes protein/RNA condensates.
Protein Sci. 2021 Jul;30(7):1418-1426. doi: 10.1002/pro.4109. Epub 2021 May 22.
9
Aging can transform single-component protein condensates into multiphase architectures.
Proc Natl Acad Sci U S A. 2022 Jun 28;119(26):e2119800119. doi: 10.1073/pnas.2119800119. Epub 2022 Jun 21.
10
Energy landscapes of homopolymeric RNAs revealed by deep unsupervised learning.
Biophys J. 2024 May 7;123(9):1152-1163. doi: 10.1016/j.bpj.2024.04.003. Epub 2024 Apr 3.

本文引用的文献

2
Energy landscapes of homopolymeric RNAs revealed by deep unsupervised learning.
Biophys J. 2024 May 7;123(9):1152-1163. doi: 10.1016/j.bpj.2024.04.003. Epub 2024 Apr 3.
3
Submillisecond Atomistic Molecular Dynamics Simulations Reveal Hydrogen Bond-Driven Diffusion of a Guest Peptide in Protein-RNA Condensate.
J Phys Chem B. 2024 Mar 14;128(10):2347-2359. doi: 10.1021/acs.jpcb.3c08126. Epub 2024 Feb 28.
4
Determinants of viscoelasticity and flow activation energy in biomolecular condensates.
Sci Adv. 2024 Feb 16;10(7):eadi6539. doi: 10.1126/sciadv.adi6539.
5
Phase separation of multicomponent peptide mixtures into dehydrated clusters with hydrophilic cores.
Biophys J. 2024 Feb 6;123(3):349-360. doi: 10.1016/j.bpj.2023.12.027. Epub 2024 Jan 1.
6
Multiscale Simulations to Discover Self-Assembled Oligopeptides: A Benchmarking Study.
J Chem Theory Comput. 2024 Jan 9;20(1):375-384. doi: 10.1021/acs.jctc.3c00699. Epub 2023 Nov 28.
7
RNAs undergo phase transitions with lower critical solution temperatures.
Nat Chem. 2023 Dec;15(12):1693-1704. doi: 10.1038/s41557-023-01353-4. Epub 2023 Nov 6.
8
Aromatic and arginine content drives multiphasic condensation of protein-RNA mixtures.
Biophys J. 2024 Jun 4;123(11):1342-1355. doi: 10.1016/j.bpj.2023.06.024. Epub 2023 Jul 5.
9
Biomolecular condensates formed by designer minimalistic peptides.
Nat Commun. 2023 Jan 26;14(1):421. doi: 10.1038/s41467-023-36060-8.
10
A guide to membraneless organelles and their various roles in gene regulation.
Nat Rev Mol Cell Biol. 2023 Apr;24(4):288-304. doi: 10.1038/s41580-022-00558-8. Epub 2022 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验