Department of Chemistry, Iowa State University, Ames, Iowa.
Department of Chemistry, Iowa State University, Ames, Iowa; Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa.
Biophys J. 2024 Feb 6;123(3):349-360. doi: 10.1016/j.bpj.2023.12.027. Epub 2024 Jan 1.
Phase separation of biomolecules underlies the formation and regulation of various membraneless condensates in cells. How condensates function reliably while surrounded by heterogeneous and dynamic mixtures of biomolecular components with specific and nonspecific interactions is yet to be understood. Studying multicomponent biomolecular mixtures with designer peptides has recently become an attractive avenue for learning about physicochemical principles governing cellular condensates. In this work, we employed long-timescale atomistic simulations of multicomponent tripeptide mixtures with all residue substitutions to illuminate the nature of direct and water-mediated interactions in a prototypical cellular condensate environment. We find that peptide mixtures form clusters with inverse hydrophobic order. Most multivalent and charged residues are localized in the cluster's core, with a large fraction of nonaromatic hydrophobic residues remaining on the surface. This inverse hydrophobic order in peptide clusters is partly driven by the expulsion of nonspecifically bound water molecules following peptide cluster growth. The growth of clusters is also accompanied by the formation of increasing numbers of specific water-mediated interactions between polar and charged residues. While the present study focused on the condensation of short peptide motifs, the general findings and analysis techniques should be helpful for future studies on larger peptides and protein condensation.
生物分子的液-液相分离是细胞中各种无膜液滴形成和调控的基础。在周围是具有特异性和非特异性相互作用的生物分子成分的异质和动态混合物的情况下,液滴如何可靠地发挥作用,这一点仍有待理解。使用设计肽研究多组分生物分子混合物,最近成为了解控制细胞液滴的物理化学原理的一个有吸引力的途径。在这项工作中,我们采用了具有所有残基取代的三肽混合物的长时间尺度原子模拟,以阐明在典型的细胞液滴环境中直接和水介导相互作用的性质。我们发现肽混合物形成了具有反疏水性序的聚集体。大多数多价和带电残基位于聚集体的核心,很大一部分非芳香族疏水性残基留在表面。肽聚集体中的这种反疏水性序部分是由肽聚集体生长后非特异性结合水的排出驱动的。聚集体的生长还伴随着极性和带电残基之间越来越多的特异性水介导相互作用的形成。虽然本研究集中在短肽基序的凝聚上,但一般发现和分析技术应该有助于未来对更大的肽和蛋白质凝聚的研究。