Suppr超能文献

多组分肽混合物在亲水核脱水簇中的相分离。

Phase separation of multicomponent peptide mixtures into dehydrated clusters with hydrophilic cores.

机构信息

Department of Chemistry, Iowa State University, Ames, Iowa.

Department of Chemistry, Iowa State University, Ames, Iowa; Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa.

出版信息

Biophys J. 2024 Feb 6;123(3):349-360. doi: 10.1016/j.bpj.2023.12.027. Epub 2024 Jan 1.

Abstract

Phase separation of biomolecules underlies the formation and regulation of various membraneless condensates in cells. How condensates function reliably while surrounded by heterogeneous and dynamic mixtures of biomolecular components with specific and nonspecific interactions is yet to be understood. Studying multicomponent biomolecular mixtures with designer peptides has recently become an attractive avenue for learning about physicochemical principles governing cellular condensates. In this work, we employed long-timescale atomistic simulations of multicomponent tripeptide mixtures with all residue substitutions to illuminate the nature of direct and water-mediated interactions in a prototypical cellular condensate environment. We find that peptide mixtures form clusters with inverse hydrophobic order. Most multivalent and charged residues are localized in the cluster's core, with a large fraction of nonaromatic hydrophobic residues remaining on the surface. This inverse hydrophobic order in peptide clusters is partly driven by the expulsion of nonspecifically bound water molecules following peptide cluster growth. The growth of clusters is also accompanied by the formation of increasing numbers of specific water-mediated interactions between polar and charged residues. While the present study focused on the condensation of short peptide motifs, the general findings and analysis techniques should be helpful for future studies on larger peptides and protein condensation.

摘要

生物分子的液-液相分离是细胞中各种无膜液滴形成和调控的基础。在周围是具有特异性和非特异性相互作用的生物分子成分的异质和动态混合物的情况下,液滴如何可靠地发挥作用,这一点仍有待理解。使用设计肽研究多组分生物分子混合物,最近成为了解控制细胞液滴的物理化学原理的一个有吸引力的途径。在这项工作中,我们采用了具有所有残基取代的三肽混合物的长时间尺度原子模拟,以阐明在典型的细胞液滴环境中直接和水介导相互作用的性质。我们发现肽混合物形成了具有反疏水性序的聚集体。大多数多价和带电残基位于聚集体的核心,很大一部分非芳香族疏水性残基留在表面。肽聚集体中的这种反疏水性序部分是由肽聚集体生长后非特异性结合水的排出驱动的。聚集体的生长还伴随着极性和带电残基之间越来越多的特异性水介导相互作用的形成。虽然本研究集中在短肽基序的凝聚上,但一般发现和分析技术应该有助于未来对更大的肽和蛋白质凝聚的研究。

相似文献

1
Phase separation of multicomponent peptide mixtures into dehydrated clusters with hydrophilic cores.
Biophys J. 2024 Feb 6;123(3):349-360. doi: 10.1016/j.bpj.2023.12.027. Epub 2024 Jan 1.
3
Nucleoprotein Phase-Separation Affinities Revealed via Atomistic Simulations of Short Peptide and RNA Fragments.
J Phys Chem Lett. 2024 Oct 31;15(43):10811-10817. doi: 10.1021/acs.jpclett.4c02654. Epub 2024 Oct 21.
6
Regulation of Peptide Liquid-Liquid Phase Separation by Aromatic Amino Acid Composition.
Small. 2024 Sep;20(38):e2401665. doi: 10.1002/smll.202401665. Epub 2024 May 28.
8
Molecular Details of Protein Condensates Probed by Microsecond Long Atomistic Simulations.
J Phys Chem B. 2020 Dec 24;124(51):11671-11679. doi: 10.1021/acs.jpcb.0c10489. Epub 2020 Dec 10.
9
Binary peptide coacervates as an active model for biomolecular condensates.
Nat Commun. 2025 Mar 11;16(1):2407. doi: 10.1038/s41467-025-57772-z.
10
Peptide-Based Biomimetic Condensates via Liquid-Liquid Phase Separation as Biomedical Delivery Vehicles.
Biomacromolecules. 2024 Sep 9;25(9):5468-5488. doi: 10.1021/acs.biomac.4c00814. Epub 2024 Aug 23.

引用本文的文献

2
Molecular Drivers of Aging in Biomolecular Condensates: Desolvation, Rigidification, and Sticker Lifetimes.
PRX Life. 2024 Jun;2(2). doi: 10.1103/prxlife.2.023011. Epub 2024 Jun 6.
3
Nucleoprotein Phase-Separation Affinities Revealed via Atomistic Simulations of Short Peptide and RNA Fragments.
J Phys Chem Lett. 2024 Oct 31;15(43):10811-10817. doi: 10.1021/acs.jpclett.4c02654. Epub 2024 Oct 21.
4
The biophysics of water in cell biology: perspectives on a keystone for both marine sciences and cancer research.
Front Cell Dev Biol. 2024 May 13;12:1403037. doi: 10.3389/fcell.2024.1403037. eCollection 2024.
5
Peptide diffusion in biomolecular condensates.
Biophys J. 2024 Jun 18;123(12):1668-1675. doi: 10.1016/j.bpj.2024.05.009. Epub 2024 May 15.

本文引用的文献

1
Expanding the molecular language of protein liquid-liquid phase separation.
Nat Chem. 2024 Jul;16(7):1113-1124. doi: 10.1038/s41557-024-01489-x. Epub 2024 Mar 29.
2
Improved predictions of phase behaviour of intrinsically disordered proteins by tuning the interaction range.
Open Res Eur. 2023 Jan 17;2:94. doi: 10.12688/openreseurope.14967.2. eCollection 2022.
3
Liquid-Liquid Phase Separation Modifies the Dynamic Properties of Intrinsically Disordered Proteins.
J Am Chem Soc. 2023 May 17;145(19):10548-10563. doi: 10.1021/jacs.2c13647. Epub 2023 May 5.
4
When Phased without Water: Biophysics of Cellular Desiccation, from Biomolecules to Condensates.
Chem Rev. 2023 Jul 26;123(14):9010-9035. doi: 10.1021/acs.chemrev.2c00659. Epub 2023 May 3.
5
Developments in describing equilibrium phase transitions of multivalent associative macromolecules.
Curr Opin Struct Biol. 2023 Apr;79:102540. doi: 10.1016/j.sbi.2023.102540. Epub 2023 Feb 16.
6
Nucleation of Biomolecular Condensates from Finite-Sized Simulations.
J Phys Chem Lett. 2023 Feb 23;14(7):1748-1755. doi: 10.1021/acs.jpclett.2c03512. Epub 2023 Feb 9.
7
Open questions on liquid-liquid phase separation.
Commun Chem. 2023 Feb 3;6(1):23. doi: 10.1038/s42004-023-00823-7.
8
Biomolecular condensates formed by designer minimalistic peptides.
Nat Commun. 2023 Jan 26;14(1):421. doi: 10.1038/s41467-023-36060-8.
9
Influence of central sidechain on self-assembly of glycine-x-glycine peptides.
Soft Matter. 2023 Jan 18;19(3):394-409. doi: 10.1039/d2sm01082h.
10
SpiDec: Computing binodals and interfacial tension of biomolecular condensates from simulations of spinodal decomposition.
Front Mol Biosci. 2022 Oct 24;9:1021939. doi: 10.3389/fmolb.2022.1021939. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验