Chuang Gwo-Tsann, Hsiung Chia-Ni, Che Tony Pan-Hou, Chang Yi-Cheng
Division of Nephrology, Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan,
Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan,
Am J Nephrol. 2025;56(2):198-210. doi: 10.1159/000541982. Epub 2024 Oct 21.
Chronic kidney diseases (CKD) encompass a spectrum of complex pathophysiological processes. While numerous genome-wide association studies (GWASs) have focused on individual traits such as albuminuria, estimated glomerular filtration rate (eGFR), and eGFR change, there remains a paucity of genetic studies integrating these traits collectively for comprehensive evaluation.
In this study, we performed individual GWASs for albuminuria, baseline eGFR, and eGFR slope utilizing data from non-diabetic individuals enrolled from the Taiwan Biobank (TWB). Subsequently, we employed principal component analysis to transform these three quantitative traits into principal components (PCs) and performed GWAS based on these principal components (PC-based GWAS).
The individual GWAS analyses of albuminuria, baseline eGFR, and eGFR slope identified 10, 13, and 210 candidate loci respectively, with 2, 3, and 99 of them representing previously reported loci. PC-based GWAS identified additional 20 novel candidate loci linked to CKD (p values ranging from 5.8 × 10-7 to 9.1 × 10-6). Notably, 4 of these 20 single nucleotide polymorphisms (rs9332641, rs10737429, rs117231653, and rs73360624) exhibited significant associations with kidney expression quantitative trait loci.
To our knowledge, this study represents the first PC-based GWAS integrating albuminuria, baseline eGFR, and eGFR slope. Our approach found 20 novel candidate loci suggestively associated with CKD, underscoring the value of integrating multiple kidney traits in unraveling the pathophysiology of this complex disorder.
慢性肾脏病(CKD)涵盖一系列复杂的病理生理过程。尽管众多全基因组关联研究(GWAS)聚焦于诸如蛋白尿、估计肾小球滤过率(eGFR)和eGFR变化等个体特征,但将这些特征综合起来进行全面评估的遗传学研究仍然匮乏。
在本研究中,我们利用从台湾生物银行(TWB)招募的非糖尿病个体的数据,对蛋白尿、基线eGFR和eGFR斜率进行了个体GWAS分析。随后,我们采用主成分分析将这三个定量特征转化为主成分(PC),并基于这些主成分进行GWAS(基于主成分的GWAS)。
对蛋白尿、基线eGFR和eGFR斜率的个体GWAS分析分别鉴定出10个、13个和210个候选基因座,其中分别有2个、3个和99个代表先前报道的基因座。基于主成分的GWAS鉴定出另外20个与CKD相关的新候选基因座(p值范围为5.8×10-7至9.1×10-6)。值得注意的是,这20个单核苷酸多态性(rs9332641、rs10737429、rs117231653和rs73360624)中的4个与肾脏表达定量性状基因座表现出显著关联。
据我们所知,本研究是首次基于主成分的GWAS,整合了蛋白尿、基线eGFR和eGFR斜率。我们的方法发现了20个与CKD可能相关的新候选基因座,强调了整合多个肾脏特征在揭示这种复杂疾病病理生理学中的价值。