Suppr超能文献

面向任务的 EEG 去噪生成对抗网络,用于提高 SSVEP-BCI 的性能。

Task-oriented EEG denoising generative adversarial network for enhancing SSVEP-BCI performance.

机构信息

College of Intelligence Science and Technology, National University of Defense Technology, Changsha, People's Republic of China.

出版信息

J Neural Eng. 2024 Nov 5;21(6). doi: 10.1088/1741-2552/ad8963.

Abstract

The quality of electroencephalogram (EEG) signals directly impacts the performance of brain-computer interface (BCI) tasks. Many methods have been proposed to eliminate noise from EEG signals, but most of these methods focus solely on signal denoising itself, disregarding the impact on subsequent tasks, which deviates from the original intention of EEG denoising. The main objective of this study is to optimize EEG denoising models with a purpose of improving the performance of BCI tasks.To this end, we proposed an innovative task-oriented EEG denoising generative adversarial network (TOED-GAN) method. This network utilizes the generator of GAN to decompose and reconstruct clean signals from the raw EEG signals, and the discriminator to learn to distinguish the generated signals from the true clean signals, resulting in a remarkable increase of the signal-to-noise ratio by simultaneously enhancing task-related components and removing task-irrelevant noise from the original contaminated signals.We evaluated the performance of the model on a public dataset and a self-collected dataset respectively, with canonical correlation analysis classification tasks of the steady-state visual evoked potential (SSVEP) based BCI. Experimental results demonstrate that TOED-GAN exhibits excellent performance in removing EEG noise and improving performance for SSVEP-BCI, with accuracy improvement rates reaching 18.47% and 21.33% in contrast to the baseline methods of convolutional neural networks, respectively.This work proves that the proposed TOED-GAN, as an EEG denoising method tailored for SSVEP tasks, contributes to enhancing the performance of BCIs in practical application scenarios.

摘要

脑电图(EEG)信号的质量直接影响脑机接口(BCI)任务的性能。已经提出了许多方法来消除 EEG 信号中的噪声,但这些方法大多仅专注于信号去噪本身,而忽略了对后续任务的影响,这偏离了 EEG 去噪的初衷。本研究的主要目标是以优化 EEG 去噪模型为目的,提高 BCI 任务的性能。

为此,我们提出了一种创新的面向任务的 EEG 去噪生成对抗网络(TOED-GAN)方法。该网络利用 GAN 的生成器从原始 EEG 信号中分解和重建干净信号,利用鉴别器学习区分生成信号和真实干净信号,从而在同时增强与任务相关的成分和从原始污染信号中去除与任务无关的噪声的情况下,显著提高信噪比。

我们分别在公共数据集和自行收集的数据集上评估了模型的性能,使用基于稳态视觉诱发电位(SSVEP)的 BCI 的典型相关分析分类任务。实验结果表明,TOED-GAN 在去除 EEG 噪声和提高 SSVEP-BCI 性能方面表现出色,与卷积神经网络的基线方法相比,准确率分别提高了 18.47%和 21.33%。

这项工作证明了所提出的 TOED-GAN 作为一种针对 SSVEP 任务的 EEG 去噪方法,有助于提高实际应用场景中 BCI 的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验