Pinsky Michael R, Gomez Hernando, Wertz Anthony, Leonard Jim, Dubrawski Artur, Poropatich Ronald
Cardiopulmonary Research Laboratory, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA.
Center for Military Medicine Research, University of Pittsburgh, Pittsburgh, PA.
Crit Care Med. 2024 Dec 1;52(12):1947-1957. doi: 10.1097/CCM.0000000000006297. Epub 2024 Oct 22.
Appropriate resuscitation from hemorrhagic shock is critical to restore tissue perfusion and to avoid over-resuscitation. The objective of this study was to test the ability of a closed-loop diagnosis and resuscitation algorithm called resuscitation from shock using functional hemodynamic monitoring using invasive monitoring (ReFit1) and minimally invasive monitoring (ReFit2) to identify, treat, and stabilize a porcine model of severe hemorrhagic shock.
We created a ReFit algorithm using dynamic hemodynamic parameters of pulse pressure variation (PPV), stroke volume variation (SVV), dynamic arterial elastance (Ea dyn = PPV/SVV), driven by mean arterial pressure (MAP), mixed venous oxygen saturation, and heart rate targets to define the need for fluids, vasopressors, and inotropes.
University-based animal laboratory.
Twenty-seven female pigs.
Anesthetized, intubated, and ventilated (8 mL/kg) pigs were bled at 10 mL/min until a MAP of less than 40 mm Hg, held for 30 minutes, then resuscitated. The ReFit algorithm used the above dynamic parameters to drive computer-controlled infusion pumps to deliver blood, lactated Ringer's solution, norepinephrine, and in ReFit1 dobutamine. In four animals, after initial resuscitation from hemorrhagic shock, the ability of the ReFit1 algorithm to treat acute air embolism-induced pulmonary hypertension and right heart failure was also tested.
In 10 ReFit1 and 17 ReFit2 animals, the time to stabilization from shock was not dissimilar to open controlled resuscitation performed by an expert physician (52 ± 12, 50 ± 13, and 60 ± 15 min, respectively) with similar amounts of fluids and norepinephrine needed. In four ReFit1 animals after initial stabilization, the algorithm successfully resuscitated the animals after inducing an acute air embolism right heart failure, with all animals recovering stability within 30 minutes.
Our physiologically based functional hemodynamic monitoring-centered closed-loop resuscitation system can effectively diagnose and treat cardiovascular shock due to hemorrhage and air embolism.
从失血性休克中进行恰当的复苏对于恢复组织灌注和避免过度复苏至关重要。本研究的目的是测试一种名为“基于有创监测的功能血流动力学监测休克复苏(ReFit1)”和“基于微创监测的休克复苏(ReFit2)”的闭环诊断与复苏算法识别、治疗并稳定猪严重失血性休克模型的能力。
我们利用脉压变异(PPV)、每搏量变异(SVV)、动态动脉弹性(Ea dyn = PPV/SVV)等动态血流动力学参数创建了ReFit算法,由平均动脉压(MAP)、混合静脉血氧饱和度和心率目标驱动,以确定对液体、血管升压药和正性肌力药物的需求。
大学动物实验室。
27只雌性猪。
对麻醉、插管并机械通气(8 mL/kg)的猪以10 mL/min的速度放血,直至MAP低于40 mmHg,维持30分钟,然后进行复苏。ReFit算法利用上述动态参数驱动计算机控制的输液泵输送血液、乳酸林格液、去甲肾上腺素,在ReFit1中还使用多巴酚丁胺。在4只动物中,在从失血性休克进行初始复苏后,还测试了ReFit算法治疗急性空气栓塞诱导的肺动脉高压和右心衰竭的能力。
在10只采用ReFit1和17只采用ReFit2的动物中,从休克中稳定下来的时间与由专家医生进行的开放对照复苏相似(分别为52±±12、50±±13和60±±15分钟),所需的液体量和去甲肾上腺素量相似。在4只最初稳定后的ReFit1动物中,该算法在诱导急性空气栓塞右心衰竭后成功复苏了动物,所有动物在30分钟内恢复稳定。
我们以基于生理学的功能血流动力学监测为中心的闭环复苏系统能够有效诊断和治疗因出血和气栓引起的心血管休克。