Zobrist Björn, Bertholet Jenny, Frei Daniel, Volken Werner, Amstutz Florian, Stampanoni Marco F M, Manser Peter, Fix Michael K, Loebner Hannes A
Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.
Institute for Biomedical Engineering, ETH Zürich and PSI, Villigen, Switzerland.
Med Phys. 2025 Feb;52(2):1281-1292. doi: 10.1002/mp.17472. Epub 2024 Oct 22.
Dose calculation in radiotherapy aims to accurately estimate and assess the dose distribution of a treatment plan. Monte Carlo (MC) dose calculation is considered the gold standard owing to its ability to accurately simulate particle transport in inhomogeneous media. However, uncertainties such as the patient's dynamically deforming anatomy can still lead to differences between the delivered and planned dose distribution.
Development and validation of a deformable voxel geometry for MC dose calculations (DefVoxMC) to account for dynamic deformation in the dose calculation process of photon- and electron-based radiotherapy treatment plans for clinically motivated cases.
DefVoxMC relies on the subdivision of a regular voxel geometry into dodecahedrons. It allows shifting the dodecahedrons' corner points according to the deformation in the patient's anatomy using deformation vector fields (DVF). DefVoxMC is integrated into the Swiss Monte Carlo Plan (SMCP) to allow the MC dose calculation of photon- and electron-based treatment plans on the deformable voxel geometry. DefVoxMC is validated in two steps. A compression test and a Fano test are performed in silico. Delta4 (for photon beams) and EBT4 film measurements in a cubic PMMA phantom (for electron beams) are performed on a TrueBeam in Developer Mode for clinically motivated treatment plans. During these measurements, table motion is used to mimic rigid dynamic patient motion. The measured and calculated dose distributions are compared using gamma passing rate (GPR) (3% / 2 mm (global), 10% threshold). DefVoxMC is used to study the impact of patient-recorded breathing motion on the dose distribution for clinically motivated lung and breast cases, each prescribed 50 Gy to 50% of the target volume. A volumetric modulated arc therapy (VMAT) and an arc mixed-beam radiotherapy (Arc-MBRT) plan are created for the lung and breast case, respectively. For the dose calculation, the dynamic deformation of the patient's anatomy is described by DVFs obtained from deformable image registration of the different phases of 4DCTs. The resulting dose distributions are compared to the ones of the static situation using dose-volume histograms and dose differences.
DefVoxMC is successfully integrated into the SMCP to enable the MC dose calculation of photon- and electron-based treatments on a dynamically deforming patient anatomy. The compression and the Fano test agree within 1.0% and 0.1% with the expected result, respectively. Delta4 and EBT4 film measurements agree with the calculated dose by a GPR >95%. For the clinically motivated cases, breathing motion resulted in areas with a dose increase of up to 26.9 Gy (lung) and up to 7.6 Gy (breast) compared to the static situation. The largest dose differences are observed in high-dose-gradient regions perpendicular to the beam plane, consequently decreasing the planning target volume coverage (V95%) by 4.2% for the lung case and 2.0% for the breast case.
A novel method for MC dose calculation for photon- and electron-based treatments on dynamically deforming anatomy is successfully developed and validated. Applying DefVoxMC to clinically motivated cases, we found that breathing motion has non-negligible impact on the dosimetric plan quality.
放射治疗中的剂量计算旨在准确估计和评估治疗计划的剂量分布。蒙特卡罗(MC)剂量计算因其能够在非均匀介质中准确模拟粒子传输而被视为金标准。然而,诸如患者动态变形的解剖结构等不确定性仍可能导致实际 delivered 剂量分布与计划剂量分布之间存在差异。
开发并验证用于 MC 剂量计算的可变形体素几何结构(DefVoxMC),以考虑基于光子和电子的放射治疗计划在临床实际病例剂量计算过程中的动态变形。
DefVoxMC 依赖于将规则体素几何结构细分为十二面体。它允许使用变形矢量场(DVF)根据患者解剖结构的变形来移动十二面体的角点。DefVoxMC 被集成到瑞士蒙特卡罗计划(SMCP)中,以允许在可变形体素几何结构上对基于光子和电子的治疗计划进行 MC 剂量计算。DefVoxMC 分两步进行验证。在计算机模拟中进行压缩测试和法诺测试。对于临床实际治疗计划,在开发者模式下的 TrueBeam 上,在立方 PMMA 体模中进行 Delta4(用于光子束)和 EBT4 胶片测量(用于电子束)。在这些测量过程中,使用治疗床运动来模拟刚性动态患者运动。使用伽马通过率(GPR)(3% / 2 毫米(全局),10%阈值)比较测量和计算的剂量分布。DefVoxMC 用于研究患者记录的呼吸运动对临床实际肺部和乳腺病例剂量分布的影响,每个病例对 50%的靶体积处方剂量为 50 Gy。分别为肺部和乳腺病例创建容积调强弧形治疗(VMAT)和弧形混合束放射治疗(Arc-MBRT)计划。对于剂量计算,患者解剖结构的动态变形由从 4DCT 的不同相位的可变形图像配准获得的 DVF 描述。使用剂量体积直方图和剂量差异将所得剂量分布与静态情况的剂量分布进行比较。
DefVoxMC 成功集成到 SMCP 中,以实现对动态变形患者解剖结构上基于光子和电子的治疗进行 MC 剂量计算。压缩测试和法诺测试分别与预期结果在 1.0%和 0.1%范围内一致。Delta4 和 EBT4 胶片测量与计算剂量的 GPR > 95%一致。对于临床实际病例,与静态情况相比呼吸运动导致剂量增加的区域在肺部高达 26.9 Gy,在乳腺高达 7.6 Gy。在垂直于射束平面的高剂量梯度区域观察到最大剂量差异,因此肺部病例的计划靶体积覆盖率(V95%)降低了 4.2%,乳腺病例降低了 2.0%。
成功开发并验证了一种用于在动态变形解剖结构上进行基于光子和电子治疗的 MC 剂量计算的新方法。将 DefVoxMC 应用于临床实际病例,我们发现呼吸运动对剂量计划质量有不可忽略的影响。