Suppr超能文献

IgG 亚类通过抗原结合进行寡聚化的能力来调节补体的激活。

Complement activation by IgG subclasses is governed by their ability to oligomerize upon antigen binding.

机构信息

Medical Engineering, Nano Structuring and Bio-Analytics, University of Applied Sciences Upper Austria, Linz 4020, Austria.

Genmab, Utrecht 3584 CT, The Netherlands.

出版信息

Proc Natl Acad Sci U S A. 2024 Oct 29;121(44):e2406192121. doi: 10.1073/pnas.2406192121. Epub 2024 Oct 22.

Abstract

Complement activation through antibody-antigen complexes is crucial in various pathophysiological processes and utilized in immunotherapies to eliminate infectious agents, regulatory immune cells, or cancer cells. The tertiary structures of the four IgG antibody subclasses are largely comparable, with the most prominent difference being the hinge regions connecting the Fab and Fc domains, providing them with unique structural flexibility. Complement recruitment and activation depend strongly on IgG subclass, which is commonly rationalized by differences in hinge flexibility and the respective affinities for C1, the first component of the classical complement pathway. However, a unifying mechanism of how these different IgG subclass properties combine to modulate C1 activation has not yet been proposed. We here demonstrate that complement activation is determined by their varying ability to form IgG oligomers on antigenic surfaces large enough to multivalently bind and activate C1. We directly visualize the resulting IgG oligomer structures and characterize their distribution by means of high-speed atomic force microscopy, quantify their complement recruitment efficiency from quartz crystal microbalance experiments, and characterize their ability to activate complement on tumor cell lines as well as in vesicle-based complement lysis assays. We present a mechanistic model of the multivalent interactions that govern C1 binding to IgG oligomers and use it to extract kinetic rate constants from real-time interaction data from which we further calculate equilibrium dissociation constants. Together, we provide a comprehensive view on the parameters that govern complement activation by the different IgG subclasses, which may inform the design of future antibody therapies.

摘要

抗体-抗原复合物的补体激活在各种病理生理过程中至关重要,并被用于免疫疗法以消除感染因子、调节免疫细胞或癌细胞。四种 IgG 抗体亚类的三级结构在很大程度上是可比的,最显著的区别在于连接 Fab 和 Fc 结构域的铰链区,赋予它们独特的结构灵活性。补体的募集和激活强烈依赖于 IgG 亚类,这通常可以通过铰链的灵活性和各自与经典补体途径的第一成分 C1 的亲和力的差异来合理化。然而,不同的 IgG 亚类特性如何结合来调节 C1 激活的统一机制尚未提出。我们在这里证明,补体的激活取决于它们在抗原表面上形成足够大的 IgG 寡聚体的能力,这些寡聚体能够多价结合并激活 C1。我们通过高速原子力显微镜直接观察到由此产生的 IgG 寡聚体结构,并通过石英晶体微天平实验量化其从补体招募效率,以及在肿瘤细胞系和基于囊泡的补体溶解测定中表征其激活补体的能力。我们提出了一个控制 C1 与 IgG 寡聚体结合的多价相互作用的机制模型,并使用它从实时相互作用数据中提取动力学速率常数,我们进一步从这些数据计算出平衡解离常数。总之,我们提供了一个全面的观点,即不同的 IgG 亚类如何控制补体的激活,这可能为未来的抗体治疗设计提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28b6/11536094/ef04ad841e3c/pnas.2406192121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验