Department of Pharmacology, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka.
Faculty of Computing, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka.
PLoS One. 2024 Oct 22;19(10):e0309843. doi: 10.1371/journal.pone.0309843. eCollection 2024.
Sri Lankans do not have a specific cardiovascular (CV) risk prediction model and therefore, World Health Organization(WHO) risk charts developed for the Southeast Asia Region are being used. We aimed to develop a CV risk prediction model specific for Sri Lankans using machine learning (ML) of data of a population-based, randomly selected cohort of Sri Lankans followed up for 10 years and to validate it in an external cohort.
The cohort consisted of 2596 individuals between 40-65 years of age in 2007, who were followed up for 10 years. Of them, 179 developed hard CV diseases (CVD) by 2017. We developed three CV risk prediction models named model 1, 2 and 3 using ML. We compared predictive performances between models and the WHO risk charts using receiver operating characteristic curves (ROC). The most predictive and practical model for use in primary care, model 3 was named "SLCVD score" which used age, sex, smoking status, systolic blood pressure, history of diabetes, and total cholesterol level in the calculation. We developed an online platform to calculate the SLCVD score. Predictions of SLCVD score were validated in an external hospital-based cohort.
Model 1, 2, SLCVD score and the WHO risk charts predicted 173, 162, 169 and 10 of 179 observed events and the area under the ROC (AUC) were 0.98, 0.98, 0.98 and 0.52 respectively. During external validation, the SLCVD score and WHO risk charts predicted 56 and 18 respectively of 119 total events and AUCs were 0.64 and 0.54 respectively.
SLCVD score is the first and only CV risk prediction model specific for Sri Lankans. It predicts the 10-year risk of developing a hard CVD in Sri Lankans. SLCVD score was more effective in predicting Sri Lankans at high CV risk than WHO risk charts.
斯里兰卡人没有特定的心血管(CV)风险预测模型,因此,正在使用为东南亚地区开发的世界卫生组织(WHO)风险图表。我们的目标是使用基于人群的、随机选择的斯里兰卡队列的数据进行机器学习(ML),开发一个针对斯里兰卡人的 CV 风险预测模型,并在外部队列中对其进行验证。
该队列由 2007 年年龄在 40-65 岁之间的 2596 人组成,随访 10 年。其中,179 人在 2017 年之前发生了严重的心血管疾病(CVD)。我们使用 ML 开发了三个 CV 风险预测模型,分别命名为模型 1、2 和 3。我们使用接受者操作特征曲线(ROC)比较了模型之间和 WHO 风险图表之间的预测性能。在初级保健中最具预测性和实用性的模型是“ SLCVD 评分”,该模型在计算中使用了年龄、性别、吸烟状况、收缩压、糖尿病史和总胆固醇水平。我们开发了一个在线平台来计算 SLCVD 评分。在外部医院队列中验证了 SLCVD 评分的预测。
模型 1、2、SLCVD 评分和 WHO 风险图表分别预测了 173、162、169 和 10 个观察到的事件,ROC 下面积(AUC)分别为 0.98、0.98、0.98 和 0.52。在外部验证期间,SLCVD 评分和 WHO 风险图表分别预测了 119 例总事件中的 56 例和 18 例,AUC 分别为 0.64 和 0.54。
SLCVD 评分是第一个也是唯一一个针对斯里兰卡人的 CV 风险预测模型。它预测了斯里兰卡人在 10 年内发生严重 CVD 的风险。SLCVD 评分比 WHO 风险图表更有效地预测了斯里兰卡人的高 CV 风险。