Mohapatra Saurav Ranjan, Rama Elena, Werner Maximillian P, Call Tobias, Loewenberg Tanja, Loewen Alexander, Apel Christian, Kiessling Fabian, Jockenhoevel Stefan
Department of Biohybrid & Medical Textile (BioTex), Center for Biohybrid Medical Systems (CBMS), Institute for Applied Medical Engineering, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany.
Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany.
Ann Biomed Eng. 2025 Feb;53(2):383-397. doi: 10.1007/s10439-024-03632-8. Epub 2024 Oct 22.
The development of cardiovascular implants is abundant, yet their clinical adoption remains a significant challenge in the treatment of valvular diseases. Tissue-engineered heart valves (TEHV) have emerged as a promising solution due to their remodeling capabilities, which have been extensively studied in recent years. However, ensuring reproducible production and clinical translation of TEHV requires robust longitudinal monitoring methods.Cardiovascular magnetic resonance imaging (MRI) is a non-invasive, radiation-free technique providing detailed valvular imaging and functional assessment. To facilitate this, we designed a state-of-the-art metal-free bioreactor enabling dynamic MRI and ultrasound imaging. Our compact bioreactor, tailored to fit a 72 mm bore 7 T MRI coil, features an integrated backflow design ensuring MRI compatibility. A pneumatic drive system operates the bioreactor, minimizing potential MRI interference. The bioreactor was digitally designed and constructed using polymethyl methacrylate, utilizing only polyether ether ketone screws for secure fastening. Our biohybrid TEHV incorporates a non-degradable polyethylene terephthalate textile scaffold with fibrin matrix hydrogel and human arterial smooth muscle cells.As a result, the bioreactor was successfully proven to be MRI compatible, with no blooming artifacts detected. The dynamic movement of the TEHVs was observed using gated MRI motion artifact compensation and ultrasound imaging techniques. In addition, the conditioning of TEHVs in the bioreactor enhanced ECM production. Immunohistology demonstrated abundant collagen, α-smooth muscle actin, and a monolayer of endothelial cells throughout the valve cusp. Our innovative methodology provides a physiologically relevant environment for TEHV conditioning and development, enabling accurate monitoring and assessment of functionality, thus accelerating clinical acceptance.
心血管植入物的发展成果丰硕,然而在瓣膜疾病的治疗中,其临床应用仍然是一项重大挑战。组织工程心脏瓣膜(TEHV)因其重塑能力而成为一种有前景的解决方案,近年来对其进行了广泛研究。然而,要确保TEHV的可重复生产和临床转化,需要强大的纵向监测方法。心血管磁共振成像(MRI)是一种非侵入性、无辐射的技术,可提供详细的瓣膜成像和功能评估。为便于实现这一点,我们设计了一种先进的无金属生物反应器,能够进行动态MRI和超声成像。我们紧凑的生物反应器专为适配72毫米孔径的7T MRI线圈而设计,具有集成的回流设计,确保与MRI兼容。气动驱动系统操作该生物反应器,将潜在的MRI干扰降至最低。该生物反应器采用聚甲基丙烯酸甲酯进行数字化设计和构建,仅使用聚醚醚酮螺钉进行牢固固定。我们的生物杂交TEHV包含一种不可降解的聚对苯二甲酸乙二酯纺织支架、纤维蛋白基质水凝胶和人动脉平滑肌细胞。结果,该生物反应器成功被证明与MRI兼容,未检测到伪影。使用门控MRI运动伪影补偿和超声成像技术观察到了TEHV的动态运动。此外,TEHV在生物反应器中的预处理增强了细胞外基质的产生。免疫组织学显示整个瓣膜尖有丰富的胶原蛋白、α平滑肌肌动蛋白和单层内皮细胞。我们的创新方法为TEHV的预处理和发育提供了一个生理相关的环境,能够准确监测和评估其功能,从而加速临床应用。