Suppr超能文献

一种结合临床判断与机器学习以辅助医疗决策的方法:对伴有多种长期疾病的急性阑尾炎患者的非紧急手术策略的分析。

An Approach for Combining Clinical Judgment with Machine Learning to Inform Medical Decision Making: Analysis of Nonemergency Surgery Strategies for Acute Appendicitis in Patients with Multiple Long-Term Conditions.

机构信息

Department of Health Services Research and Policy, London School of Hygiene & Tropical Medicine, London, UK.

Bristol Surgical Trials Centre, University of Bristol, Bristol, UK.

出版信息

Med Decis Making. 2024 Nov;44(8):944-960. doi: 10.1177/0272989X241289336. Epub 2024 Oct 23.

Abstract

BACKGROUND

Machine learning (ML) methods can identify complex patterns of treatment effect heterogeneity. However, before ML can help to personalize decision making, transparent approaches must be developed that draw on clinical judgment. We develop an approach that combines clinical judgment with ML to generate appropriate comparative effectiveness evidence for informing decision making.

METHODS

We motivate this approach in evaluating the effectiveness of nonemergency surgery (NES) strategies, such as antibiotic therapy, for people with acute appendicitis who have multiple long-term conditions (MLTCs) compared with emergency surgery (ES). Our 4-stage approach 1) draws on clinical judgment about which patient characteristics and morbidities modify the relative effectiveness of NES; 2) selects additional covariates from a high-dimensional covariate space ( > 500) by applying an ML approach, least absolute shrinkage and selection operator (LASSO), to large-scale administrative data ( = 24,312); 3) generates estimates of comparative effectiveness for relevant subgroups; and 4) presents evidence in a suitable form for decision making.

RESULTS

This approach provides useful evidence for clinically relevant subgroups. We found that overall NES strategies led to increases in the mean number of days alive and out-of-hospital compared with ES, but estimates differed across subgroups, ranging from 21.2 (95% confidence interval: 1.8 to 40.5) for patients with chronic heart failure and chronic kidney disease to -10.4 (-29.8 to 9.1) for patients with cancer and hypertension. Our interactive tool for visualizing ML output allows for findings to be customized according to the specific needs of the clinical decision maker.

CONCLUSIONS

This principled approach of combining clinical judgment with an ML approach can improve trust, relevance, and usefulness of the evidence generated for clinical decision making.

HIGHLIGHTS

Machine learning (ML) methods have many potential applications in medical decision making, but the lack of model interpretability and usability constitutes an important barrier for the wider adoption of ML evidence in practice.We develop a 4-stage approach for integrating clinical judgment into the way an ML approach is used to estimate and report comparative effectiveness.We illustrate the approach in undertaking an evaluation of nonemergency surgery (NES) strategies for acute appendicitis in patients with multiple long-term conditions and find that NES strategies lead to better outcomes compared with emergency surgery and that the effects differ across subgroups.We develop an interactive tool for visualizing the results of this study that allows findings to be customized according to the user's preferences.

摘要

背景

机器学习 (ML) 方法可以识别治疗效果异质性的复杂模式。然而,在 ML 能够帮助实现个性化决策之前,必须开发出透明的方法,这些方法需要借鉴临床判断。我们开发了一种将临床判断与 ML 相结合的方法,为决策提供合适的比较效果证据。

方法

我们在评估非紧急手术 (NES) 策略(如抗生素治疗)的有效性时提出了这种方法,例如对于患有多种长期疾病 (MLTC) 的急性阑尾炎患者,与紧急手术 (ES) 相比。我们的四阶段方法 1)利用关于哪些患者特征和合并症改变 NES 相对有效性的临床判断;2)通过将机器学习方法(最小绝对收缩和选择算子 (LASSO))应用于大型行政数据(= 24,312),从高维协变量空间(> 500)中选择其他协变量;3)生成相关亚组的比较效果估计;4)以适合决策的形式呈现证据。

结果

这种方法为临床相关亚组提供了有用的证据。我们发现,总体而言,与 ES 相比,NES 策略导致存活天数和院外天数增加,但估计值因亚组而异,范围从慢性心力衰竭和慢性肾脏病患者的 21.2(95%置信区间:1.8 至 40.5)到癌症和高血压患者的-10.4(-29.8 至 9.1)。我们用于可视化 ML 输出的交互式工具允许根据临床决策者的具体需求定制发现。

结论

这种将临床判断与 ML 方法相结合的原则性方法可以提高证据的可信度、相关性和对临床决策的有用性。

重点

机器学习 (ML) 方法在医疗决策中有许多潜在的应用,但模型可解释性和可用性的缺乏是 ML 证据在实践中更广泛采用的一个重要障碍。我们开发了一种将临床判断纳入使用 ML 方法来估计和报告比较效果的方式的四阶段方法。我们在评估急性阑尾炎患者的非紧急手术 (NES) 策略时说明了该方法,并发现与紧急手术相比,NES 策略可带来更好的结果,并且效果因亚组而异。我们开发了一种用于可视化本研究结果的交互式工具,允许根据用户的偏好定制发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5970/11542320/3a32a45d3bd6/10.1177_0272989X241289336-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验