Suppr超能文献

影响常规脑电图在各种适应症中检出率的临床和放射学参数。

Clinical and Radiological Parameters Affecting the Yield of Routine Electroencephalography in Various Indications.

作者信息

Shahid Rizwana, Zafar Azra, Nazish Saima, Alameri Sarah Ali, Shariff Erum, Alshamrani Foziah, Aljaafari Danah, Soltan Nehad Mahmoud, Alkhamis Fahd A, Albakr Aishah Ibrahim, Alabdali Majed, Saqqur Maher

机构信息

Department of Neurology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.

Department of Neurology, College of Medicine and Neurology, University of Alberta, Edmonton, Alberta, Canada.

出版信息

Ann Afr Med. 2024 Oct 23;24(1):37-44. doi: 10.4103/aam.aam_73_23.

Abstract

OBJECTIVES

To highlight the significance of various clinical and radiological parameters in association with specific electroencephalographic (EEG) patterns in order to prioritize EEG referrals.

METHOD

This retrospective, cross-sectional study was conducted in the neurology department of King Fahad University Hospital, Alkhobar, and involved a review and analysis of EEG and medical records pertaining to 604 patients referred for routine EEG. The data were analyzed using SPSS version 22. An association between various parameters and EEG yield was established.

RESULTS

Factors associated with the yield of abnormal EEG patterns were diverse, like generalized tonic-clonic seizures (GTCs) (P =.05), status epilepticus (SE) (P =.05), altered level of consciousness (ALC) (P =.00), abnormal movement (P =.00), cardiac arrest (P =.00), prior history of epilepsy (P =.04), chronic renal disease (CRD) (P =.03), abnormal neurological exam (P =.00), and cortical lesions on brain imaging (P =.00). Among the abnormal EEG patterns, epileptiform activity (EA) in EEG was associated with focal seizures (P =.03), GTCs (P =.00), falls (P =.05), cardiac arrest (P =.00), a history of epilepsy (P =.00), and hypoxic ischemic injury (P =.03). Encephalopathy in EEG was also associated with focal sz (P =.02), GTCs (P =.00), SE (P =.01), ALC (P =.00), cardiac arrest (P =.00), history of stroke (P =.01), and epilepsy (P =.00).

CONCLUSION

Among the studied parameters, patient level of consciousness, neurological exam findings, and neuroimaging findings, with some discrepancies, were found to be the most consistent in predicting the EEG yield. The study demonstrated the value of a proper neurological exam and careful selection of patients to gain the optimum benefit from the routine EEG.

摘要

目的

强调各种临床和放射学参数与特定脑电图(EEG)模式相关联的重要性,以便对EEG转诊进行优先级排序。

方法

这项回顾性横断面研究在宰赫兰法赫德国王大学医院神经科进行,涉及对604例因常规EEG转诊患者的EEG和病历进行回顾与分析。使用SPSS 22版软件对数据进行分析。确定了各种参数与EEG结果之间的关联。

结果

与异常EEG模式结果相关的因素多种多样,如全身强直阵挛性发作(GTCs)(P = 0.05)、癫痫持续状态(SE)(P = 0.05)、意识水平改变(ALC)(P = 0.00)、异常运动(P = 0.00)、心脏骤停(P = 0.00)、癫痫病史(P = 0.04)、慢性肾病(CRD)(P = 0.03)、神经系统检查异常(P = 0.00)以及脑成像上的皮质病变(P = 0.00)。在异常EEG模式中,EEG中的癫痫样活动(EA)与局灶性发作(P = 0.03)、GTCs(P = 0.00)、跌倒(P = 0.05)、心脏骤停(P = 0.00)、癫痫病史(P = 0.00)以及缺氧缺血性损伤(P = 0.03)相关。EEG中的脑病也与局灶性癫痫(P = 0.02)、GTCs(P = 0.00)、SE(P = 0.01)、ALC(P = 0.00)、心脏骤停(P = 0.00)、中风病史(P = 0.01)以及癫痫(P = 0.00)相关。

结论

在所研究的参数中,患者的意识水平、神经系统检查结果以及神经影像学检查结果(存在一些差异)在预测EEG结果方面最为一致。该研究证明了进行适当的神经系统检查和仔细选择患者以从常规EEG中获得最佳益处的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d7c/11837829/1e10e77ed595/AAM-24-37-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验