Suppr超能文献

嵌入双原子活性位点的石墨炔作为氨合成的电催化剂。

Diatomic Active Sites Embedded Graphyne as Electrocatalysts for Ammonia Synthesis.

作者信息

Chen Xiaoting, Zhao Man-Rong, Song Bingyi, Li Guoliang, Yang Li-Ming

机构信息

Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou 510006, China.

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

ACS Appl Mater Interfaces. 2024 Nov 6;16(44):60231-60242. doi: 10.1021/acsami.4c13025. Epub 2024 Oct 23.

Abstract

Ammonia (NH) is a vital chemical compound in industry and agriculture, and the electrochemical nitrogen reduction reaction (eNRR) is considered a promising approach for NH synthesis. However, the development of eNRR faces the challenge of high overpotential and low Faradaic efficiency. In this work, graphyne (GY) is anchored by 3d, 4d, and 5d dual transition metal atoms to form diatomic catalysts (DACs) and is roundly investigated as an electrocatalyst for eNRR via density functional theory calculations. Due to the protrusion of anchored metal atoms, the active sites of GY are better exposed compared to other substrates, exhibiting higher activity. Through four-step hierarchical high-throughput screening (Δ < 0 eV, Δ < 0.4 eV, Δ < 0.4 eV, and Δ < Δ), the number of selected catalysts in each step is 325, 240, 145, and 20, respectively. Considering a series of factors, including stability, initial potential, and selectivity, 13 kinds of eligible catalysts are identified. Optimal eNRR paths studies show that the best catalyst Mn@GY features no onset potential. For the three catalysts (Mn@GY, Ir@GY, and RhOs@GY), the onset potentials of the most favorable eNRR pathways are -0.07, -0.12, and -0.17 V, respectively. The excellent catalytic activity can be credited to the effective charge transfer and orbital interaction between the active site and adsorbed N. Our work demonstrates the significance of DACs for ammonia synthesis and provides a paradigm for the study of DACs even for other important reactions.

摘要

氨(NH₃)是工农业中一种重要的化合物,电化学氮还原反应(eNRR)被认为是合成氨的一种有前景的方法。然而,eNRR的发展面临着高过电位和低法拉第效率的挑战。在这项工作中,通过密度泛函理论计算,将石墨炔(GY)用3d、4d和5d双过渡金属原子锚定以形成双原子催化剂(DACs),并对其作为eNRR的电催化剂进行了全面研究。由于锚定金属原子的突出,与其他底物相比,GY的活性位点得到了更好的暴露,表现出更高的活性。通过四步分级高通量筛选(ΔG < 0 eV、ΔE < 0.4 eV、ΔE < 0.4 eV和ΔE < ΔG),每一步筛选出的催化剂数量分别为325、240、145和20种。综合考虑稳定性、初始电位和选择性等一系列因素,确定了13种合格的催化剂。最佳eNRR路径研究表明,最佳催化剂Mn@GY没有起始电位。对于三种催化剂(Mn@GY、Ir@GY和RhOs@GY),最有利的eNRR路径的起始电位分别为 -0.07、-0.12和 -0.17 V。优异的催化活性可归因于活性位点与吸附的N之间有效的电荷转移和轨道相互作用。我们的工作证明了DACs在氨合成中的重要性,并为DACs的研究甚至其他重要反应提供了一个范例。

相似文献

1
Diatomic Active Sites Embedded Graphyne as Electrocatalysts for Ammonia Synthesis.嵌入双原子活性位点的石墨炔作为氨合成的电催化剂。
ACS Appl Mater Interfaces. 2024 Nov 6;16(44):60231-60242. doi: 10.1021/acsami.4c13025. Epub 2024 Oct 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验