Suppr超能文献

ACLNDA:一种用于在异质图中预测非编码 RNA-疾病关联的非对称图对比学习框架。

ACLNDA: an asymmetric graph contrastive learning framework for predicting noncoding RNA-disease associations in heterogeneous graphs.

机构信息

School of Automation Science and Engineering, Xi'an Jiaotong University, Xi'an, Shannxi 710049, China.

Research Institute, Xi'an Jiaotong University, Zhejiang, Hangzhou, Zhejiang 311200, China.

出版信息

Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae533.

Abstract

Noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), play crucial roles in gene expression regulation and are significant in disease associations and medical research. Accurate ncRNA-disease association prediction is essential for understanding disease mechanisms and developing treatments. Existing methods often focus on single tasks like lncRNA-disease associations (LDAs), miRNA-disease associations (MDAs), or lncRNA-miRNA interactions (LMIs), and fail to exploit heterogeneous graph characteristics. We propose ACLNDA, an asymmetric graph contrastive learning framework for analyzing heterophilic ncRNA-disease associations. It constructs inter-layer adjacency matrices from the original lncRNA, miRNA, and disease associations, and uses a Top-K intra-layer similarity edges construction approach to form a triple-layer heterogeneous graph. Unlike traditional works, to account for both node attribute features (ncRNA/disease) and node preference features (association), ACLNDA employs an asymmetric yet simple graph contrastive learning framework to maximize one-hop neighborhood context and two-hop similarity, extracting ncRNA-disease features without relying on graph augmentations or homophily assumptions, reducing computational cost while preserving data integrity. Our framework is capable of being applied to a universal range of potential LDA, MDA, and LMI association predictions. Further experimental results demonstrate superior performance to other existing state-of-the-art baseline methods, which shows its potential for providing insights into disease diagnosis and therapeutic target identification. The source code and data of ACLNDA is publicly available at https://github.com/AI4Bread/ACLNDA.

摘要

非编码 RNA(ncRNAs),包括长非编码 RNA(lncRNAs)和 microRNAs(miRNAs),在基因表达调控中发挥着关键作用,与疾病的关联和医学研究密切相关。准确预测 ncRNA-疾病关联对于理解疾病机制和开发治疗方法至关重要。现有的方法通常专注于单个任务,如 lncRNA-疾病关联(LDAs)、miRNA-疾病关联(MDAs)或 lncRNA-miRNA 相互作用(LMIs),而未能充分利用异构图的特征。我们提出了 ACLNDA,一种用于分析异质 ncRNA-疾病关联的非对称图对比学习框架。它从原始 lncRNA、miRNA 和疾病关联中构建了层间邻接矩阵,并使用 Top-K 层内相似边构建方法形成了三层异构图。与传统方法不同,为了同时考虑节点属性特征(ncRNA/疾病)和节点偏好特征(关联),ACLNDA 采用了一种非对称但简单的图对比学习框架,以最大化一跳邻域上下文和两跳相似度,提取 ncRNA-疾病特征,而无需依赖图增强或同配假设,降低了计算成本,同时保持了数据的完整性。我们的框架可以应用于广泛的潜在 LDA、MDA 和 LMI 关联预测。进一步的实验结果表明,与其他现有的最先进的基线方法相比,我们的方法具有更好的性能,这表明它有潜力为疾病诊断和治疗靶点识别提供新的思路。ACLNDA 的源代码和数据可在 https://github.com/AI4Bread/ACLNDA 上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e42a/11497849/d9887b9fe744/bbae533f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验