School of Automation Science and Engineering, Xi'an Jiaotong University, Xi'an, Shannxi 710049, China.
Research Institute, Xi'an Jiaotong University, Zhejiang, Hangzhou, Zhejiang 311200, China.
Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae533.
Noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), play crucial roles in gene expression regulation and are significant in disease associations and medical research. Accurate ncRNA-disease association prediction is essential for understanding disease mechanisms and developing treatments. Existing methods often focus on single tasks like lncRNA-disease associations (LDAs), miRNA-disease associations (MDAs), or lncRNA-miRNA interactions (LMIs), and fail to exploit heterogeneous graph characteristics. We propose ACLNDA, an asymmetric graph contrastive learning framework for analyzing heterophilic ncRNA-disease associations. It constructs inter-layer adjacency matrices from the original lncRNA, miRNA, and disease associations, and uses a Top-K intra-layer similarity edges construction approach to form a triple-layer heterogeneous graph. Unlike traditional works, to account for both node attribute features (ncRNA/disease) and node preference features (association), ACLNDA employs an asymmetric yet simple graph contrastive learning framework to maximize one-hop neighborhood context and two-hop similarity, extracting ncRNA-disease features without relying on graph augmentations or homophily assumptions, reducing computational cost while preserving data integrity. Our framework is capable of being applied to a universal range of potential LDA, MDA, and LMI association predictions. Further experimental results demonstrate superior performance to other existing state-of-the-art baseline methods, which shows its potential for providing insights into disease diagnosis and therapeutic target identification. The source code and data of ACLNDA is publicly available at https://github.com/AI4Bread/ACLNDA.
非编码 RNA(ncRNAs),包括长非编码 RNA(lncRNAs)和 microRNAs(miRNAs),在基因表达调控中发挥着关键作用,与疾病的关联和医学研究密切相关。准确预测 ncRNA-疾病关联对于理解疾病机制和开发治疗方法至关重要。现有的方法通常专注于单个任务,如 lncRNA-疾病关联(LDAs)、miRNA-疾病关联(MDAs)或 lncRNA-miRNA 相互作用(LMIs),而未能充分利用异构图的特征。我们提出了 ACLNDA,一种用于分析异质 ncRNA-疾病关联的非对称图对比学习框架。它从原始 lncRNA、miRNA 和疾病关联中构建了层间邻接矩阵,并使用 Top-K 层内相似边构建方法形成了三层异构图。与传统方法不同,为了同时考虑节点属性特征(ncRNA/疾病)和节点偏好特征(关联),ACLNDA 采用了一种非对称但简单的图对比学习框架,以最大化一跳邻域上下文和两跳相似度,提取 ncRNA-疾病特征,而无需依赖图增强或同配假设,降低了计算成本,同时保持了数据的完整性。我们的框架可以应用于广泛的潜在 LDA、MDA 和 LMI 关联预测。进一步的实验结果表明,与其他现有的最先进的基线方法相比,我们的方法具有更好的性能,这表明它有潜力为疾病诊断和治疗靶点识别提供新的思路。ACLNDA 的源代码和数据可在 https://github.com/AI4Bread/ACLNDA 上获取。