Suppr超能文献

利用分子振动光谱技术(近红外和拉曼光谱)通过贝叶斯优化 1D-CNN 分析乌头中的 TVB-N。

Analyzing TVB-N in snakehead by Bayesian-optimized 1D-CNN using molecular vibrational spectroscopic techniques: Near-infrared and Raman spectroscopy.

机构信息

School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.

School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.

出版信息

Food Chem. 2025 Feb 1;464(Pt 2):141701. doi: 10.1016/j.foodchem.2024.141701. Epub 2024 Oct 19.

Abstract

Total volatile basic nitrogen (TVB-N) is one of the key indicators for assessing fish freshness. This research employed near-infrared (NIR) and Raman spectroscopy methods to detect the TVB-N content in snakehead fillets. We extracted feature variables associated with TVB-N from NIR and Raman spectroscopy using Variable Crossover Point Arithmetic - Improved Reduced-Input Vector (VCPA-IRIV). Using these features, we established partial least squares (PLS) and One-dimensional Convolutional Neural Network (1D-CNN) models. Subsequently, data fusion strategies were employed to predict the TVB-N content. Notably, feature-level fusion in conjunction with Bayesian-optimized 1D-CNN, reached the best results, as evidenced by calibration and predictive correlation coefficients of 0.9677 and 0.9676 for TVB-N. These findings underscore the effectiveness of both NIR and Raman spectroscopy in evaluating fish freshness. The fusion of these two vibrational spectroscopy techniques enables a more rapid, efficient and comprehensive quantification of fish freshness.

摘要

总挥发性碱性氮(TVB-N)是评估鱼类新鲜度的关键指标之一。本研究采用近红外(NIR)和拉曼光谱法检测蛇头鱼片的TVB-N 含量。我们使用变量交叉点算法-改进的输入向量减少(VCPA-IRIV)从 NIR 和拉曼光谱中提取与 TVB-N 相关的特征变量。使用这些特征,我们建立了偏最小二乘(PLS)和一维卷积神经网络(1D-CNN)模型。随后,采用数据融合策略预测 TVB-N 含量。值得注意的是,特征级融合结合贝叶斯优化的 1D-CNN 取得了最佳结果,TVB-N 的校准和预测相关系数分别为 0.9677 和 0.9676。这些发现表明 NIR 和拉曼光谱在评估鱼类新鲜度方面均具有有效性。这两种振动光谱技术的融合能够更快速、高效和全面地定量鱼类的新鲜度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验