Suppr超能文献

赋予知情决策的权力:计算机视觉如何帮助消费者做出关于肉类质量的决策。

Empowering informed choices: How computer vision can assists consumers in making decisions about meat quality.

机构信息

Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States 53703.

Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1L0N6.

出版信息

Meat Sci. 2025 Jan;219:109675. doi: 10.1016/j.meatsci.2024.109675. Epub 2024 Sep 21.

Abstract

Consumers often find it challenging to assess meat sensory quality, influenced by tenderness and intramuscular fat (IMF). This study aims to develop a computer vision system (CVS) using smartphone images to classify beef and pork steak tenderness (1), predicting shear force (SF) and IMF content (2), and performing a comparative evaluation between consumer assessments and the method's output (3). The dataset consisted of 924 beef and 514 pork steaks (one image per steak). We trained a deep neural network for image classification and regression. The model achieved an F1-score of 68.1 % in classifying beef as tender. After re-categorizing the dataset into 'tender' and 'tough', the F1-score for identifying tender increased to 76.6 %. For pork loin tenderness, the model achieved an F1-score of 81.4 %. This score slightly improved to 81.5 % after re-categorization into two classes. The regression models for predicting SF and IMF in beef steak achieved an R value of 0.64 and 0.62, respectively, with a root mean squared prediction error (RMSEP) of 16.9 N and 2.6 %. For pork loin, the neural network predicted SF with an R value of 0.76 and an RMSEP of 9.15 N, and IMF with an R value of 0.54 and an RMSEP of 1.22 %. In 1000 paired comparisons, the neural network correctly identified the more tender beef steak in 76.5 % of cases, compared to a 46.7 % accuracy rate for human assessments. These findings suggest that CVS can provide a more objective method for evaluating meat tenderness and IMF before purchase, potentially enhancing consumer satisfaction.

摘要

消费者在评估肉的感官质量时常常感到困难,这受到肉的嫩度和肌内脂肪(IMF)的影响。本研究旨在开发一种使用智能手机图像的计算机视觉系统(CVS)来对牛肉和猪肉牛排的嫩度进行分类(1),预测剪切力(SF)和 IMF 含量(2),并对消费者评估和该方法的输出进行比较评估(3)。该数据集由 924 块牛肉和 514 块猪肉组成(每块牛排一张图像)。我们使用深度学习网络训练了图像分类和回归模型。该模型在区分牛肉嫩度的 F1 得分为 68.1%。在将数据集重新分类为“嫩”和“老”之后,用于识别嫩度的 F1 得分提高到了 76.6%。对于猪里脊肉的嫩度,模型的 F1 得分为 81.4%。将其重新分类为两类后,该分数略有提高至 81.5%。预测牛肉牛排 SF 和 IMF 的回归模型的 R 值分别为 0.64 和 0.62,预测误差的均方根(RMSEP)分别为 16.9N 和 2.6%。对于猪里脊肉,神经网络预测 SF 的 R 值为 0.76,RMSEP 为 9.15N,预测 IMF 的 R 值为 0.54,RMSEP 为 1.22N。在 1000 次配对比较中,神经网络正确识别更嫩的牛肉牛排的比例为 76.5%,而人类评估的准确率为 46.7%。这些发现表明,CVS 可以在购买前提供一种更客观的方法来评估肉的嫩度和 IMF,从而提高消费者的满意度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验